Bootstrap Confidence Intervals for Large-scale Multivariate Monotonic Regression Problems

被引:2
|
作者
Sysoev, Oleg [1 ]
Grimvall, Anders [1 ]
Burdakov, Oleg [2 ]
机构
[1] Linkoping Univ, Dept Comp & Informat Sci, S-58183 Linkoping, Sweden
[2] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
关键词
Big data; Bootstrap; Confidence intervals; Monotonic regression; Pool-adjacent-violators algorithm; 62G08; 62G09; ALGORITHM;
D O I
10.1080/03610918.2014.911899
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, the methods used to estimate monotonic regression (MR) models have been substantially improved, and some algorithms can now produce high-accuracy monotonic fits to multivariate datasets containing over a million observations. Nevertheless, the computational burden can be prohibitively large for resampling techniques in which numerous datasets are processed independently of each other. Here, we present efficient algorithms for estimation of confidence limits in large-scale settings that take into account the similarity of the bootstrap or jackknifed datasets to which MR models are fitted. In addition, we introduce modifications that substantially improve the accuracy of MR solutions for binary response variables. The performance of our algorithms is illustrated using data on death in coronary heart disease for a large population. This example also illustrates that MR can be a valuable complement to logistic regression.
引用
收藏
页码:1025 / 1040
页数:16
相关论文
共 50 条
  • [31] BOOTSTRAP CONFIDENCE-INTERVALS IN LOCATION-SCALE MODELS WITH PROGRESSIVE CENSORING
    ROBINSON, JA
    TECHNOMETRICS, 1983, 25 (02) : 179 - 187
  • [32] LARGE-SCALE INFERENCE OF MULTIVARIATE REGRESSION FOR HEAVY-TAILED AND ASYMMETRIC DATA
    Song, Youngseok
    Zhou, Wen
    Zhou, Wen-Xin
    STATISTICA SINICA, 2023, 33 (03) : 1831 - 1852
  • [33] Improved bootstrap confidence limits in large-scale phylogenies, with an example from Neo-Astragalus (leguminosae)
    Sanderson, MJ
    Wojciechowski, MF
    SYSTEMATIC BIOLOGY, 2000, 49 (04) : 671 - 685
  • [34] Bootstrap confidence intervals for the optimal cutoff point to bisect estimated probabilities from logistic regression
    Zhang, Zheng
    Shi, Xianjun
    Xiang, Xiaogang
    Wang, Chengyong
    Xiao, Shiwu
    Su, Xiaogang
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (06) : 1514 - 1526
  • [35] Bootstrap Confidence Intervals and Coverage Probabilities of Regression Parameter Estimates Using Trimmed Elemental Estimation
    Hall, Matthew
    Mayo, Matthew S.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2008, 7 (02) : 514 - 525
  • [36] Large-scale multivariate forecasting models for Dengue - LSTM versus random forest regression
    Mussumeci, Elisa
    Coelho, Flavio Codeco
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2020, 35
  • [37] Anaerobic digestion process parameter identification and marginal confidence intervals by multivariate steady state analysis and bootstrap
    Ruiz, G
    Castellano, M
    González, W
    Roca, E
    Lema, JM
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 1327 - 1332
  • [38] BOOTSTRAP DECENTRALIZED IDENTIFICATION OF LARGE-SCALE INTERCONNECTED SYSTEMS
    MAHTO, J
    SINHA, AK
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1984, 15 (11) : 1221 - 1229
  • [39] PROBLEMS OF LARGE-SCALE - INTRODUCTION
    HOEKSTRA, HA
    GEDRAG-TIJDSCHRIFT VOOR PSYCHOLOGIE, 1983, 11 (05): : 211 - 212
  • [40] QUANTILE REGRESSION FOR LARGE-SCALE APPLICATIONS
    Yang, Jiyan
    Meng, Xiangrui
    Mahoney, Michael W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : S78 - S110