Automatic exudate detection by fusing multiple active contours and regionwise classification

被引:55
作者
Harangi, Balazs [1 ]
Hajdu, Andras [1 ]
机构
[1] Univ Debrecen, Fac Informat, H-4010 Debrecen, Hungary
关键词
Exudate detection; Active contour method; Region-wise classification; Diabetic retinopathy screening; Contours combination; Multiple pre-processing; COLOR FUNDUS PHOTOGRAPHS; DIABETIC-RETINOPATHY; RETINAL IMAGES;
D O I
10.1016/j.compbiomed.2014.09.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a method for the automatic detection of exudates in digital fundus images. Our approach can be divided into three stages: candidate extraction, precise contour segmentation and the labeling of candidates as true or false exudates. For candidate detection, we borrow a grayscale morphology-based method to identify possible regions containing these bright lesions. Then, to extract the precise boundary of the candidates, we introduce a complex active contour-based method. Namely, to increase the accuracy of segmentation, we extract additional possible contours by taking advantage of the diverse behavior of different pre-processing methods. After selecting an appropriate combination of the extracted contours, a region-wise classifier is applied to remove the false exudate candidates. For this task, we consider several region-based features, and extract an appropriate feature subset to train a Naive-Bayes classifier optimized further by an adaptive boosting technique. Regarding experimental studies, the method was tested on publicly available databases both to measure the accuracy of the segmentation of exudate regions and to recognize their presence at image-level. In a proper quantitative evaluation on publicly available datasets the proposed approach outperformed several state-of-the-art exudate detector algorithms. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:156 / 171
页数:16
相关论文
共 34 条
[1]   Evaluation of a System for Automatic Detection of Diabetic Retinopathy From Color Fundus Photographs in a Large Population of Patients With Diabetes [J].
Abramoff, Michael D. ;
Niemeijer, Meindert ;
Suttorp-Schulten, Maria S. A. ;
Viergever, Max A. ;
Russell, Stephen R. ;
van Ginneken, Bram .
DIABETES CARE, 2008, 31 (02) :193-198
[2]   Statistical atlas based exudate segmentation [J].
Ali, Sharib ;
Sidibe, Desire ;
Adal, Kedir M. ;
Giancardo, Luca ;
Chaum, Edward ;
Karnowski, Thomas P. ;
Meriaudeau, Fabrice .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2013, 37 (5-6) :358-368
[3]  
[Anonymous], FACE RECOGNITION
[4]  
[Anonymous], 1998, Image Processing, Analysis, and Machine Vision
[5]  
[Anonymous], ANAL QUANTITATIVE MI
[6]  
[Anonymous], P SPIE
[7]   Luminosity and contrast normalization in retinal images [J].
Foracchia, M ;
Grisan, E ;
Ruggeri, A .
MEDICAL IMAGE ANALYSIS, 2005, 9 (03) :179-190
[8]   A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms [J].
Frame, AJ ;
Undrill, PE ;
Cree, MJ ;
Olson, JA ;
McHardy, KC ;
Sharp, PF ;
Forrester, JV .
COMPUTERS IN BIOLOGY AND MEDICINE, 1998, 28 (03) :225-238
[9]   Neural network based detection of hard exudates in retinal images [J].
Garcia, Maria ;
Sanchez, Clara I. ;
Lopez, Maria I. ;
Abasolo, Daniel ;
Hornero, Roberto .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 93 (01) :9-19
[10]   Exudate-based diabetic macular edema detection in fundus images using publicly available datasets [J].
Giancardo, Luca ;
Meriaudeau, Fabrice ;
Karnowski, Thomas P. ;
Li, Yaqin ;
Garg, Seema ;
Tobin, Kenneth W., Jr. ;
Chaum, Edward .
MEDICAL IMAGE ANALYSIS, 2012, 16 (01) :216-226