Indecomposability of linear combinations of Bernoulli polynomials

被引:1
作者
Pinter, Akos [1 ,2 ]
Rakaczki, Csaba [3 ]
机构
[1] Hungarian Acad Sci, Inst Math, MTA DE Res Grp, Equat Funct & Curves, Budapest, Hungary
[2] Univ Debrecen, POB 400, H-4002 Debrecen, Hungary
[3] Univ Miskolc, Inst Math, Miskolc Campus, H-3515 Miskolc, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2022年 / 100卷 / 3-4期
关键词
Bernoulli polynomials; polynomial decomposability; DIOPHANTINE EQUATIONS;
D O I
10.5486/PMD.2022.9261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, the authors prove the following: for an odd integer n >= 3, and integers a(n), a(n-2), a(n-4), ..., a(3), a(l) such that 4 inverted iota a(n), the polynomial a(n) B-n(x) + a(n-2 )B(n-2)(x) + ... + a(3) B-3(x) + a(1) B-1(x), where B-n (x) stands for the n-th Bernoulli polynomial, is indecomposable over the field of complex numbers.
引用
收藏
页码:487 / 494
页数:8
相关论文
共 11 条
  • [1] The Diophantine equation f(x)=g(y)
    Bilu, YF
    Tichy, RF
    [J]. ACTA ARITHMETICA, 2000, 95 (03) : 261 - 288
  • [2] Diophantine equations and Bernoulli polynomials
    Bilu, YF
    Brindza, B
    Kirschenhofer, P
    Pintér, A
    Tichy, RF
    Schinzel, A
    [J]. COMPOSITIO MATHEMATICA, 2002, 131 (02) : 173 - 188
  • [3] Diophantine equations for second-order recursive sequences of polynomials
    Dujella, A
    Tichy, RF
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 : 161 - 169
  • [4] Decomposition of a recursive family of polynomials
    Dujella, Andrej
    Gusic, Ivica
    [J]. MONATSHEFTE FUR MATHEMATIK, 2007, 152 (02): : 97 - 104
  • [5] Decomposable polynomials in second order linear recurrence sequences
    Fuchs, Clemens
    Karolus, Christina
    Kreso, Dijana
    [J]. MANUSCRIPTA MATHEMATICA, 2019, 159 (3-4) : 321 - 346
  • [6] KRESO D., 2015, Grazer Mathematische Berichte, V363, P143
  • [7] Diophantine equations with Euler polynomials
    Kreso, Dijana
    Rakaczki, Csaba
    [J]. ACTA ARITHMETICA, 2013, 161 (03) : 267 - 281
  • [8] On the Decomposability of the Linear Combinations of Euler Polynomials with Odd Degrees
    Pinter, Akos
    Rakaczki, Csaba
    [J]. SYMMETRY-BASEL, 2019, 11 (06):
  • [9] ON THE DECOMPOSABILITY OF LINEAR COMBINATIONS OF EULER POLYNOMIALS
    Pinter, Akos
    Rakaczki, Csaba
    [J]. MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 407 - 415
  • [10] On the decomposability of linear combinations of Bernoulli polynomials
    Pinter, Akos
    Rakaczki, Csaba
    [J]. MONATSHEFTE FUR MATHEMATIK, 2016, 180 (03): : 631 - 648