Nonautonomous "rogons" in the inhomogeneous nonlinear Schrodinger equation with variable coefficients

被引:185
作者
Yan, Zhenya [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Syst Sci, Key Lab Math Mechanizat, AMSS, Beijing 100190, Peoples R China
[2] Univ Lisbon, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
[3] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110016, Peoples R China
关键词
Inhomogeneous NLS equation with variable coefficients; Similarity transformation; Rational-like solutions; Rogue waves; Rogons; SIMILARITY TRANSFORMATIONS; ROGUE WAVES;
D O I
10.1016/j.physleta.2009.11.030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analytical nonautonomous rogons are reported for the inhomogeneous nonlinear Schrodinger equation with variable coefficients in terms of rational-like functions by using the similarity transformation and direct ansatz. These obtained solutions can be used to describe the possible formation mechanisms for optical, oceanic, and matter rogue wave phenomenon in optical fibres, the deep ocean, and Bose-Einstein condensates, respectively. Moreover, the snake propagation traces and the fascinating interactions of two nonautonomous rogons are generated for the chosen different parameters. The obtained nonautonomous rogons may excite the possibility of relative experiments and potential applications for the rogue wave phenomenon in the field of nonlinear science. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:672 / 679
页数:8
相关论文
共 44 条
[1]   How to excite a rogue wave [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[2]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[3]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[4]   EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
ELEONSKII, VM ;
KULAGIN, NE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) :809-818
[5]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[6]   Are rogue waves robust against perturbations? [J].
Ankiewicz, Adrian ;
Devine, N. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2009, 373 (43) :3997-4000
[7]  
[Anonymous], CONSTRUCTIVE THEORY
[8]   Localized nonlinear waves in systems with time- and space-modulated nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Konotop, Vladimir V. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[9]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[10]   Nonlinear waves in Bose-Einstein condensates:: physical relevance and mathematical techniques [J].
Carretero-Gonzalez, R. ;
Frantzeskakis, D. J. ;
Kevrekidis, P. G. .
NONLINEARITY, 2008, 21 (07) :R139-R202