Adaptive Total Variation Regularized for Hyperspectral Unmixing

被引:2
作者
Xu, Chenguang [1 ]
机构
[1] Nanchang Inst Technol, Jiangxi Prov Key Lab Water Informat Cooperat Sens, Nanchang, Jiangxi, Peoples R China
来源
PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC) | 2021年
基金
中国国家自然科学基金;
关键词
hyperspectral imaging; adaptived total variation; sparse unmixing; denoising; SPARSE REGRESSION;
D O I
10.1109/PIC53636.2021.9687006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purposed of hyperspectral unmixing is to estimate the spectral signatures composing the data (endmembers) and their abundance fractions. However, most of the traditional sparse unmixing methods are effective in the case of high signal-to-noise ratio (SNR), but is not good in the case of high noise. In order to solve this problem, we innovatively integrates adaptive total variation (ATV) regularization into hyperspectral sparse unmixing and propose a new hyperspectal sparse unmixing model named adaptive total variation regularized for sparse unmixing (SU_ATV). The model can adaptively adjust the horizontal difference and vertical difference of TV, can better optimize the efficiency of TV to improve the anti-noise performance. The experimental results show that SU_ATV has good anti-noise performance to the sparse unmixing.
引用
收藏
页码:170 / 173
页数:4
相关论文
共 20 条
[1]   An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (03) :681-695
[2]  
Bioucas-Dias J., 2010, P 2 IEEE GRSS WORKSH
[3]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[4]   Spatially Adaptive Hyperspectral Unmixing [J].
Canham, Kelly ;
Schlamm, Ariel ;
Ziemann, Amanda ;
Basener, Bill ;
Messinger, David .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11) :4248-4262
[5]   Sparse hyperspectral unmixing based on smoothed l0 regularization [J].
Deng, Chengzhi ;
Zhang, Shaoquan ;
Wang, Shengqian ;
Tian, Wei ;
Wu, Zhaoming .
INFRARED PHYSICS & TECHNOLOGY, 2014, 67 :306-314
[6]   Sparse Constrained Low Tensor Rank Representation Framework for Hyperspectral Unmixing [J].
Dong, Le ;
Yuan, Yuan .
REMOTE SENSING, 2021, 13 (08)
[7]  
Iordache M. D., 2010, IEEE GEOSC RS SOC P, P1, DOI [DOI 10.1109/WHISPERS.2010.5594888, 10.1109/WHISPERS.2010.5594888]
[8]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039
[9]   Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11) :4484-4502
[10]   Reweighted local collaborative sparse regression for hyperspectral unmixing [J].
Li, Yan ;
Zhang, Shaoquan ;
Deng, Chengzhi ;
Wang, Shengqian .
INFRARED PHYSICS & TECHNOLOGY, 2019, 97 :277-286