ACEstat: A DIY Guide to Unlocking the Potential of Integrated Circuit Potentiostats for Open-Source Electrochemical Analysis

被引:11
作者
Brown, Eric W. [1 ]
Glasscott, Matthew W. [2 ]
Conley, Keith [1 ]
Barr, Jesse [1 ]
Ray, Jason D. [1 ]
Moores, Lee C. [2 ]
Netchaev, Anton [1 ]
机构
[1] US Army Engineer Res & Dev Ctr, Informat Technol Lab, Vicksburg, MS 39180 USA
[2] US Army Engineer Res & Dev Ctr, Environm Lab, Vicksburg, MS 39180 USA
关键词
2,4,6-TRINITROTOLUENE; QUANTIFICATION; ELECTRODE; SENSORS; TNT;
D O I
10.1021/acs.analchem.1c04226
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Miniaturization of analytical instrumentation is paramount to enabling convenient in-field sensing. The recent thrust in potentiostat miniaturization for electrochemical sensing and general use has led to the development of commercial application specific integrated circuits (ASICs)that pack all the power of a benchtop instrument into one 5 mmx5 mm chip. While the capabilities of these integrated circuits far exceed those of open-source potentiostats in the literature, the activation barrier for their implementation requires extensive electrical and software engineeringexpertise to overcome. In order to more rapidly bring the utility of ASICpotentiostats to researchers, we present a low size, weight, power, and cost(Low SWaP-C) Army Corps of Engineers potentiostat (ACEstat) based onthe widely available ADuCM355 offered by Analog Devices. This potentiostatis a streamlined and fully programmable device that leverages industry-leadingintegrated hardware to perform electrochemical measurements such as cyclicvoltammetry, pulse voltammetry, and electrochemical impedance spectroscopy. The ACEstat enables control over a wide range of test parameters and displays results through an intuitive, open-source graphical user interface available on mobile devices and computers. In this report, we present an approachable, do-it-yourself guide to unlocking the capabilities of this integrated circuitpotentiostat by outlining the fabrication and programming details necessary to facilitate electroanalysis. Furthermore, we demonstrate the practicality of this device by detecting 2,4,6-trinitrotoluene (TNT) in water at sub-mg/L detection limits, highlighting its potential for in-field use
引用
收藏
页码:4906 / 4912
页数:7
相关论文
共 35 条
[11]   Lifting the lid on the potentiostat: a beginner's guide to understanding electrochemical circuitry and practical operation† [J].
Colburn, Alex W. ;
Levey, Katherine J. ;
O'Hare, Danny ;
Macpherson, Julie V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (14) :8100-8117
[12]   Portable Laboratory Platform With Electrochemical Biosensors for Immunodiagnostic of Hepatitis C Virus [J].
de Campos da Costa, Joao Paulo ;
Bastos, Wagner Benicio ;
da Costa, Paulo Inacio ;
Zaghete, Maria Aparecida ;
Longo, Elson ;
Carmo, Joao Paulo .
IEEE SENSORS JOURNAL, 2019, 19 (22) :10701-10709
[13]   A Novel Multi-Working Electrode Potentiostat for Electrochemical Detection of Metabolites [J].
De Venuto, Daniela ;
Torre, Michele Daniel ;
Boero, Cristina ;
Carrara, Sandro ;
De Micheli, Giovanni .
2010 IEEE SENSORS, 2010, :1572-1577
[14]   DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration [J].
Dryden, Michael D. M. ;
Wheeler, Aaron R. .
PLOS ONE, 2015, 10 (10)
[15]   Toward Rational Design of Electrogenerated Molecularly Imprinted Polymers (eMIPs): Maximizing Monomer/Template Affinity [J].
Fernando, P. U. Ashvin Iresh ;
Glasscott, Matthew W. ;
Kosgei, Gilbert K. ;
Cobb, Jared S. ;
Alberts, Erik M. ;
Bresnahan, Caitlin G. ;
Schutt, Timothy C. ;
George, Garrett W. ;
Moores, Lee C. .
ACS APPLIED POLYMER MATERIALS, 2021, 3 (09) :4523-4533
[16]   In Situ Preconcentration and Quantification of Cu2+ via Chelating Polymer-Wrapped Multiwalled Carbon Nanotubes [J].
Fernando, P. U. Ashvin Iresh ;
Alberts, Erik ;
Glasscott, Matthew W. ;
Netchaev, Anton ;
Ray, Jason D. ;
Conley, Keith ;
Patel, Rishi ;
Fury, Jonathan ;
Henderson, David ;
Moores, Lee C. ;
Kosgei, Gilbert K. .
ACS OMEGA, 2021, 6 (08) :5158-5165
[17]   Analytical Methods Incorporating Molecularly Imprinted Polymers (MIPs) for the Quantification of Microcystins: A Mini-Review [J].
Fernando, P. U. Ashvin Iresh ;
Glasscott, Matthew W. ;
Pokrzywinski, Kaytee ;
Fernando, Brianna M. ;
Kosgei, Gilbert K. ;
Moores, Lee C. .
CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2022, 52 (06) :1244-1258
[18]  
Glasscott M. W, 2021, THESIS U N CAROLINA
[19]   μ-MIP: Molecularly Imprinted Polymer-Modified Microelectrodes for the Ultrasensitive Quantification of GenX (HFPO-DA) in River Water [J].
Glasscott, Matthew W. ;
Vannoy, Kathryn J. ;
Kazemi, Rezvan ;
Verber, Matthew D. ;
Dick, Jeffrey E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2020, 7 (07) :489-495
[20]   Electrochemical sensors for the detection of fentanyl and its analogs: Foundations and recent advances [J].
Glasscott, Matthew W. ;
Vannoy, Kathryn J. ;
Fernando, P. U. Ashvin Iresh ;
Kosgei, Gilbert K. ;
Moores, Lee C. ;
Dick, Jeffrey E. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2020, 132