Ex vivo analysis of lactate and glucose metabolism in the rat brain under different states of depressed activity

被引:41
作者
Serres, S [1 ]
Bezancon, E [1 ]
Franconi, JM [1 ]
Merle, M [1 ]
机构
[1] Univ Victor Segalen, CNRS, Unite Mixte Rech 5536, Unite Resonance Magnet Syst Biol, F-33076 Bordeaux, France
关键词
D O I
10.1074/jbc.M409429200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain metabolism of glucose and lactate was analyzed by ex vivo NMR spectroscopy in rats presenting different cerebral activities induced after the administration of pentobarbital, alpha-chloralose, or morphine. The animals were infused with a solution of either [1-C-13] glucose plus lactate or glucose plus [3-C-13] lactate for 20 min. Brain metabolite contents and enrichments were determined from analyses of brain tissue perchloric acid extracts according to their post-mortem evolution kinetics. When amino acid enrichments were compared, both the brain metabolic activity and the contribution of blood glucose relative to that of blood lactate to brain metabolism were linked with cerebral activity. The data also indicated the production in the brain of lactate from glycolysis in a compartment other than the neurons, presumably the astrocytes, and its subsequent oxidative metabolism in neurons. Therefore, a brain electrical activity-dependent increase in the relative contribution of blood glucose to brain metabolism occurred via the increase in the metabolism of lactate generated from brain glycolysis at the expense of that of blood lactate. This result strengthens the hypothesis that brain lactate is involved in the coupling between neuronal activation and metabolism.
引用
收藏
页码:47881 / 47889
页数:9
相关论文
共 37 条
[1]   GLYCEROL 3-PHOSPHATE AND LACTATE AS INDICATORS OF THE CEREBRAL CYTOPLASMIC REDOX STATE IN SEVERE AND MILD HYPOXIA RESPECTIVELY - A C-13-NMR AND P-31-NMR STUDY [J].
BENYOSEPH, O ;
BADARGOFFER, RS ;
MORRIS, PG ;
BACHELARD, HS .
BIOCHEMICAL JOURNAL, 1993, 291 :915-919
[2]   Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain [J].
Bittar, PG ;
Charnay, Y ;
Pellerin, L ;
Bouras, C ;
Magistretti, PJ .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1996, 16 (06) :1079-1089
[3]   The metabolism of [3-13C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment [J].
Bouzier, AK ;
Thiaudiere, E ;
Biran, M ;
Rouland, R ;
Canioni, P ;
Merle, M .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (02) :480-486
[4]   Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes - Expression of two different monocarboxylate transporters in astroglial cells and neurons [J].
Broer, S ;
Rahman, B ;
Pellegri, G ;
Pellerin, L ;
Martin, JL ;
Verleysdonk, S ;
Hamprecht, B ;
Magistretti, PJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (48) :30096-30102
[5]   Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes [J].
Bröer, S ;
Bröer, A ;
Schneider, HP ;
Stegen, C ;
Halestrap, AP ;
Deitmer, JW .
BIOCHEMICAL JOURNAL, 1999, 341 :529-535
[6]   Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis [J].
Chih, CP ;
Roberts, EL .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2003, 23 (11) :1263-1281
[7]   Do active cerebral neurons really use lactate rather than glucose? [J].
Chih, CP ;
Lipton, P ;
Roberts, EL .
TRENDS IN NEUROSCIENCES, 2001, 24 (10) :573-578
[8]   In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia [J].
Choi, IY ;
Lee, SP ;
Kim, SG ;
Gruetter, R .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (06) :653-663
[9]   Similar perisynaptic glial localization for the Na+,K+-ATPase α2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex [J].
Cholet, N ;
Pellerin, L ;
Magistretti, PJ ;
Hamel, E .
CEREBRAL CORTEX, 2002, 12 (05) :515-525
[10]   Intracellular compartmentation of pyruvate in primary cultures of cortical neurons as detected by 13C NMR spectroscopy with multiple 13C labels [J].
Cruz, F ;
Villalba, M ;
García-Espinosa, MA ;
Ballesteros, P ;
Bogónez, E ;
Satrústegui, J ;
Cerdán, S .
JOURNAL OF NEUROSCIENCE RESEARCH, 2001, 66 (05) :771-781