Fatigue crack growth rate model for metallic alloys

被引:15
作者
Dimitriu, R. C. [1 ]
Bhadeshia, H. K. D. H. [1 ]
机构
[1] Univ Cambridge, Cambridge CB2 3QZ, England
关键词
NEURAL-NETWORKS; HEAT-TREATMENT; PREDICTION; PROPAGATION; STEELS; THICKNESS; TOUGHNESS; BEHAVIOR;
D O I
10.1016/j.matdes.2009.11.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model has been created to allow the quantitative estimation of the fatigue crack growth rate in steels as a function of mechanical properties, test-specimen characteristics, stress-intensity range and test-frequency. With this design, the remarkable result is that the method which is based on steels, can be used without modification, and without any prior fatigue test. to estimate the crack growth rates in nickel, titanium and aluminium alloys. It appears therefore that a large proportion of the differences in the fatigue crack growth rate of metallic alloys can be explained in terms of the macroscopic tensile properties of the material rather than the details of the microstructure and chemical composition. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2134 / 2139
页数:6
相关论文
共 42 条
  • [1] Performance of neural networks in materials science
    Bhadeshia, H. K. D. H.
    Dimitriu, R. C.
    Forsik, S.
    Pak, J. H.
    Ryu, J. H.
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 2009, 25 (04) : 504 - 510
  • [2] Neural networks in materials science
    Bhadeshia, HKDH
    [J]. ISIJ INTERNATIONAL, 1999, 39 (10) : 966 - 979
  • [3] Bhadeshia HKDH., 2009, Stat Anal Data Min, V1, P296, DOI [10.1002/sam.10018, DOI 10.1002/SAM.10018]
  • [4] BROEK D, 1966, AIRCRAFT ENG, V38, P31
  • [5] Chatterjee S, 2007, MATER SCI TECH-LOND, V23, P606, DOI 10.1179/174328407X179512
  • [6] Hot strength of creep resistant ferritic steels and relationship to creep rupture data
    Dimitriu, R. C.
    Bhadeshia, H. K. D. H.
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 2007, 23 (09) : 1127 - 1131
  • [7] THEORY FOR FATIGUE CRACK-PROPAGATION
    DUGGAN, TV
    [J]. ENGINEERING FRACTURE MECHANICS, 1977, 9 (03) : 735 - 747
  • [8] Artificial neural networks for modelling of the impact toughness of steel
    Dunne, D
    Tsuei, H
    Sterjovski, Z
    [J]. ISIJ INTERNATIONAL, 2004, 44 (09) : 1599 - 1607
  • [9] Elber W., 1971, Damage tolerance in aircraft structures, P230, DOI DOI 10.1520/STP486-EB
  • [10] Prediction of low cycle fatigue lives of low alloy steels
    Goswami, T
    [J]. ISIJ INTERNATIONAL, 1996, 36 (03) : 354 - 360