An Hetero-Epitaxially Grown Zeolite Membrane

被引:45
作者
Jeong, Yanghwan [1 ]
Hong, Sungwon [1 ]
Jang, Eunhee [1 ]
Kim, Eunjoo [1 ]
Baik, Hionsuck [2 ]
Choi, Nakwon [3 ]
Yip, Alex C. K. [4 ]
Choi, Jungkyu [1 ]
机构
[1] Korea Univ, Dept Chem & Biol Engn, Seoul 02841, South Korea
[2] KBSI, Seoul Ctr, Seoul 02841, South Korea
[3] KIST, Brain Sci Inst, Ctr BioMicrosyst, Seoul 02792, South Korea
[4] Univ Canterbury, Chem & Proc Engn, Christchurch 8140, New Zealand
基金
新加坡国家研究基金会;
关键词
carbon dioxide; electron microscopy; membranes; separations; zeolites; CARBON CAPTURE; DDR ZEOLITE; HETEROEPITAXIAL GROWTH; ACCELERATED SYNTHESIS; RAPID SYNTHESIS; MFI MEMBRANES; POWER-PLANT; CO2; CAPTURE; SEPARATION; PERFORMANCE;
D O I
10.1002/anie.201911164
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The secondary growth methodology to form zeolite membranes has stringent requirements for homogeneous epitaxial intergrowth of the seed layer and limits the number of accessible high-quality zeolite membranes. Despite previous reports on hetero-epitaxial growth, high-performance zeolite membranes have yet to be reported using this approach. Here, the successful hetero-epitaxial growth of highly siliceous ZSM-58 (DDR-type zeolite) films from a SSZ-13 (CHA-type zeolite) seed layer is reported. The resulting membranes show excellent CO2 perm-selectivities, having maximum CO2 /N-2 and CO2 /CH4 separation factors (SFs) as high as about 17 and 279, respectively, at 30 degrees C. Furthermore, the hybrid membrane maintains the CO2 perm-selectivity in the presence of water vapor (the third main component in both cases), that is, CO2 /N-2 SF of about 14 and CO2 /CH4 SF of about 78, respectively, at 50 degrees C (a representative temperature of both CO2-containing streams).
引用
收藏
页码:18654 / 18662
页数:9
相关论文
共 80 条
[1]   Oriented MFI Membranes by Gel-Less Secondary Growth of Sub-100 nm MFI-Nanosheet Seed Layers [J].
Agrawal, Kumar Varoon ;
Topuz, Berna ;
Tung Cao Thanh Pham ;
Thanh Huu Nguyen ;
Sauer, Nicole ;
Rangnekar, Neel ;
Zhang, Han ;
Narasimharao, Katabathini ;
Basahel, Sulaiman Nasir ;
Francis, Lorraine F. ;
Macosko, Christopher W. ;
Al-Thabaiti, Shaeel ;
Tsapatsis, Michael ;
Yoon, Kyung Byung .
ADVANCED MATERIALS, 2015, 27 (21) :3243-3249
[2]  
[Anonymous], 2017, ANGEW CHEM, V129, P11369
[3]  
Banihashemi F., 2019, Angewandte Chemie, V131, P2541, DOI [10.1002/ange.201814248, DOI 10.1002/ANGE.201814248]
[4]   Template-Free Synthesis of Highly b-Oriented MFI-Type Zeolite Thin Films by Seeded Secondary Growth [J].
Banihashemi, Fateme ;
Ibrahim, Amr F. M. ;
Babaluo, Ali Akbar ;
Lin, Jerry Y. S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (08) :2519-2523
[5]   Separation of CO2/N2 mixtures using MFI-type zeolite membranes [J].
Bernal, MP ;
Coronas, J ;
Menéndez, M ;
Santamaría, J .
AICHE JOURNAL, 2004, 50 (01) :127-135
[6]   Fluorescence confocal optical microscopy imaging of the grain boundary structure of zeolite MFI membranes made by secondary (seeded) growth [J].
Bonilla, G ;
Tsapatsis, M ;
Vlachos, DG ;
Xomeritakis, G .
JOURNAL OF MEMBRANE SCIENCE, 2001, 182 (1-2) :103-109
[7]   Factors controlling the formation of core-shell zeolite-zeolite composites [J].
Bouizi, Younes ;
Rouleau, Loic ;
Valtchev, Valentin P. .
CHEMISTRY OF MATERIALS, 2006, 18 (20) :4959-4966
[8]  
Bui M, 2018, ENERG ENVIRON SCI, V11, P1062, DOI [10.1039/c7ee02342a, 10.1039/C7EE02342A]
[9]   Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling [J].
Burton, AW ;
Lee, GS ;
Zones, SI .
MICROPOROUS AND MESOPOROUS MATERIALS, 2006, 90 (1-3) :129-144
[10]   Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four- channel hollow fibers for CO2 capture from CH4 [J].
Chen, Yang ;
Zhang, Yuting ;
Zhang, Chun ;
Jiang, Ji ;
Gu, Xuehong .
JOURNAL OF CO2 UTILIZATION, 2017, 18 :30-40