On the eigenvalue problem involving the weighted p-Laplacian in radially symmetric domains

被引:3
作者
Drabek, Pavel [1 ]
Ho, Ky [2 ]
Sarkar, Abhishek [3 ]
机构
[1] Univ West Bohemia, Dept Math, Univ 8, Plzen 30614, Czech Republic
[2] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[3] Univ West Bohemia, NTIS, Tech 8, Plzen 30614, Czech Republic
关键词
The weighted p-Laplacian; The first eigenvalue; Exterior domain; Regularity; Asymptotic behavior; Maximum principles; Variational method; DEGENERATE ELLIPTIC-EQUATIONS; STURM-LIOUVILLE PROBLEM; UNBOUNDED-DOMAINS; REGULARITY; PRINCIPLE;
D O I
10.1016/j.jmaa.2018.08.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the following eigenvalue problem {-div (L(x) vertical bar del u vertical bar(p-2)del u) = lambda K(x)vertical bar u vertical bar(p-2)u in A(R1)(R2), u = 0 on partial derivative A(R1)(R2), where A(R1)(R2) := {x is an element of R-N : R1 < vertical bar x vertical bar < R-2} (0 < R-1 < R-2 <= infinity), lambda > 0 is a parameter, the weights L and K are measurable with L positive a.e. in A(R1)(R2) and K possibly sign-changing in A(R1)(R2). We prove the existence of the first eigenpair and discuss the regularity and positiveness of eigenfunctions. The asymptotic estimates for u(x) and del u(x) as vertical bar x vertical bar -> R-1(+) or R-2(-) are also investigated. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:716 / 756
页数:41
相关论文
共 24 条
[1]   Anisotropie semipositone quasilinear problems [J].
Agudelo, Oscar ;
Drabek, Pavel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) :1145-1167
[2]  
[Anonymous], 1997, QUASILINEAR ELLIPTIC, DOI DOI 10.1515/9783110804775
[3]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[4]  
[Anonymous], 2001, T MAT I STEKLOVA
[5]  
[Anonymous], 1968, Ann. Mat. Pura Appl. (4), DOI DOI 10.1007/BF02413623
[6]   Antimaximum principle in exterior domains [J].
Anoop, T. V. ;
Drabek, P. ;
Sankar, Lakshmi ;
Sasi, Sarath .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 :241-254
[7]   Weighted quasilinear eigenvalue problems in exterior domains [J].
Anoop, T. V. ;
Drabek, Pavel ;
Sasi, Sarath .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) :961-975
[8]   On the existence of stationary solutions for higher-order p-Kirchhoff problems [J].
Autuori, Giuseppina ;
Colasuonno, Francesca ;
Pucci, Patrizia .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (05)
[9]   Principal Eigenvalue of p-Laplacian Operator in Exterior Domain [J].
Chhetri, Maya ;
Drabek, Pavel .
RESULTS IN MATHEMATICS, 2014, 66 (3-4) :461-468
[10]   Multiple solutions for an eigenvalue problem involving p-Laplacian type operators [J].
Colasuonno, Francesca ;
Pucci, Patrizia ;
Varga, Csaba .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) :4496-4512