Positive, negative, and sign-changing solutions to a quasilinear Schrodinger equation with a parameter

被引:7
作者
Yang, Xianyong [1 ,2 ]
Tang, Xianhua [1 ]
Zhang, Youpei [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
[2] Yunnan Minzu Univ, Sch Preparatory Educ, Kunming 650500, Yunnan, Peoples R China
关键词
SOLITON-SOLUTIONS; NONRADIAL SOLUTIONS; ELLIPTIC-EQUATIONS; WAVE SOLUTIONS; EXISTENCE;
D O I
10.1063/1.5116602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the following quasilinear Schrodinger equation with a parameter: -Delta u + V(x)u - kappa alpha Delta(vertical bar u vertical bar(2 alpha))vertical bar u vertical bar(2 alpha-2)u = vertical bar u vertical bar(p-2)u + vertical bar u vertical bar((2 alpha)2)*(-2)u in R-N, where N >= 3, alpha > 1/2, 2 < p < (2 alpha)2*, and kappa is a positive constant. Under different assumptions on V, we obtain the existence of positive, negative, and sign-changing solutions. Our results generalize the results of Liu et al. [J. Differ. Equations 187, 473-493 (2003)] into the critical case for general alpha. Published under license by AIP Publishing.
引用
收藏
页数:24
相关论文
共 33 条
[11]   QUASILINEAR SCHRODINGER EQUATIONS INVOLVING CONCAVE AND CONVEX NONLINEARITIES [J].
do O, Joao Marcos ;
Severo, Uberlandio .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) :621-644
[12]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[13]   Existence and concentration of positive solutions for quasilinear Schrodinger equations with critical growth [J].
He, Xiaoming ;
Qian, Aixia ;
Zou, Wenming .
NONLINEARITY, 2013, 26 (12) :3137-3168
[14]   Positive solutions for a class of singular quasilinear Schrodinger equations with critical Sobolev exponent [J].
Li, Zhouxin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (11) :7264-7290
[15]   Solutions for a class of quasilinear Schrodinger equations with critical Sobolev exponents [J].
Li, Zhouxin ;
Zhang, Yimin .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
[16]   NONSMOOTH CRITICAL POINT THEOREMS AND ITS APPLICATIONS TO QUASILINEAR SCHRODINGER EQUATIONS [J].
Li, Zhouxin ;
Shen, Yaotian .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (01) :73-86
[17]   Multibump solutions for quasilinear elliptic equations [J].
Liu, Jia-Quan ;
Wang, Zhi-Qiang ;
Guo, Yu-Xia .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :4040-4102
[18]   Solutions for quasilinear Schrodinger equations via the Nehari method [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) :879-901
[19]   Soliton solutions for quasilinear Schrodinger equations, I [J].
Liu, JQ ;
Wang, ZQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :441-448
[20]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493