Positive, negative, and sign-changing solutions to a quasilinear Schrodinger equation with a parameter

被引:7
作者
Yang, Xianyong [1 ,2 ]
Tang, Xianhua [1 ]
Zhang, Youpei [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410205, Hunan, Peoples R China
[2] Yunnan Minzu Univ, Sch Preparatory Educ, Kunming 650500, Yunnan, Peoples R China
关键词
SOLITON-SOLUTIONS; NONRADIAL SOLUTIONS; ELLIPTIC-EQUATIONS; WAVE SOLUTIONS; EXISTENCE;
D O I
10.1063/1.5116602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the following quasilinear Schrodinger equation with a parameter: -Delta u + V(x)u - kappa alpha Delta(vertical bar u vertical bar(2 alpha))vertical bar u vertical bar(2 alpha-2)u = vertical bar u vertical bar(p-2)u + vertical bar u vertical bar((2 alpha)2)*(-2)u in R-N, where N >= 3, alpha > 1/2, 2 < p < (2 alpha)2*, and kappa is a positive constant. Under different assumptions on V, we obtain the existence of positive, negative, and sign-changing solutions. Our results generalize the results of Liu et al. [J. Differ. Equations 187, 473-493 (2003)] into the critical case for general alpha. Published under license by AIP Publishing.
引用
收藏
页数:24
相关论文
共 33 条
[1]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[2]   INFINITELY MANY NONRADIAL SOLUTIONS OF A EUCLIDEAN SCALAR FIELD EQUATION [J].
BARTSCH, T ;
WILLEM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 117 (02) :447-460
[3]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]  
Canino A., 1995, NONSMOOTH CRITICAL P
[6]   Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrodinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent [J].
Chen, Jianhua ;
Tang, Xianhua ;
Cheng, Bitao .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[7]   Semiclassical ground state solutions for critical Schrodinger-Poisson systems with lower perturbations [J].
Chen, Sitong ;
Fiscella, Alessio ;
Pucci, Patrizia ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (06) :2672-2716
[8]   On the planar Schrodinger-Poisson system with the axially symmetric potential [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) :945-976
[9]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[10]   Critical exponents and solitary wave solutions for generalized quasilinear Schrodinger equations [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :1228-1262