Microbial consumption and production of volatile organic compounds at the soil-litter interface

被引:89
作者
Ramirez, Kelly S. [1 ]
Lauber, Christian L. [2 ]
Fierer, Noah [1 ,2 ]
机构
[1] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
Litter decomposition; Microbial ecology; Plant-soil interactions; Soil CO(2) dynamics; VOC; Volatile organic compounds; REACTION-MASS-SPECTROMETRY; FOREST SOIL; TERRESTRIAL ECOSYSTEMS; TROPOSPHERIC CHEMISTRY; METHANE CONSUMPTION; PLANT MATTER; EMISSIONS; INHIBITION; BACTERIAL; MONOTERPENES;
D O I
10.1007/s10533-009-9393-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Substantial amounts of volatile organic compounds (VOCs) can be released during decomposition and these compounds can affect atmospheric chemistry, belowground processes, and the structure of microbial communities in litter and soil. However, we have a limited understanding of the types, quantities and ecological impacts of VOCs emitted from litter. Here we used a closed flow-through system and proton transfer reaction mass spectrometry (PTR-MS) to characterize VOC emissions from soil and two litter types (Pinus taeda and Acer rubrum) over a 72-day incubation period. Microbial respiration rates were measured throughout the incubation, and the soils were harvested at the end of the incubation to determine how litter VOCs influenced soil C dynamics, N mineralization rates, and bacterial communities. Using the PTR-MS we identified over 100 VOCs, with 10 VOCs making up the majority of emissions. VOCs accounted for up to 2.5% of the C flux from litter. Soil was a net sink of litter VOCs, absorbing up to 80% of VOCs released by litter, and exposure of soil to litter VOCs increased microbial respiration rates in soil by up to 15%. However, we observed negligible impacts of litter VOCs on soil nutrient levels and bacterial community structure, suggesting that soils must be exposed to higher concentrations of VOCs than observed in our study, to cause effects on these soil characteristics. Overall, VOCs appear to have an important influence on C dynamics at the soil-litter interface and VOC emissions from decomposing litter may represent an understudied component of biosphere-atmosphere interactions.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 44 条
[1]   Inhibition of methane consumption in forest soils and pure cultures of methanotrophs by aqueous forest soil extracts [J].
Amaral, JA ;
Knowles, R .
SOIL BIOLOGY & BIOCHEMISTRY, 1997, 29 (11-12) :1713-1720
[2]   Inhibition of methane consumption in forest soils by monoterpenes [J].
Amaral, JA ;
Knowles, R .
JOURNAL OF CHEMICAL ECOLOGY, 1998, 24 (04) :723-734
[3]  
[Anonymous], 2001, UNDERSTANDING SOIL C
[4]   On-line screening of soil VOCs exchange responses to moisture, temperature and root presence [J].
Asensio, Dolores ;
Penuelas, Josep ;
Filella, Iolanda ;
Llusia, Joan .
PLANT AND SOIL, 2007, 291 (1-2) :249-261
[5]   On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry [J].
Bunge, Michael ;
Araghipour, Nooshin ;
Mikoviny, Tomas ;
Dunkl, Juergen ;
Schnitzhofer, Ralf ;
Hansel, Armin ;
Schinner, Franz ;
Wisthaler, Armin ;
Margesin, Rosa ;
Maerk, Tilmann D. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (07) :2179-2186
[6]  
Cleveland CC, 1998, APPL ENVIRON MICROB, V64, P172
[7]   Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry [J].
de Gouw, J ;
Warneke, C ;
Karl, T ;
Eerdekens, G ;
van der Veen, C ;
Fall, R .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2003, 223 (1-3) :365-382
[8]   Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J].
DeSantis, T. Z. ;
Hugenholtz, P. ;
Larsen, N. ;
Rojas, M. ;
Brodie, E. L. ;
Keller, K. ;
Huber, T. ;
Dalevi, D. ;
Hu, P. ;
Andersen, G. L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) :5069-5072
[9]   Variations in microbial community composition through two soil depth profiles [J].
Fierer, N ;
Schimel, JP ;
Holden, PA .
SOIL BIOLOGY & BIOCHEMISTRY, 2003, 35 (01) :167-176
[10]   The influence of sex, handedness, and washing on the diversity of hand surface bacteria [J].
Fierer, Noah ;
Hamady, Micah ;
Lauber, Christian L. ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (46) :17994-17999