Unexpected behavior of Caputo fractional derivative

被引:14
|
作者
Bazaglia Kuroda, Lucas Kenjy [1 ]
Gomes, Arianne Vellasco [2 ]
Tavoni, Robinson [1 ]
de Arruda Mancera, Paulo Fernando [1 ]
Varalta, Najla [2 ]
Camargo, Rubens de Figueiredo [3 ]
机构
[1] UNESP, Inst Biociencias, Dept Bioestat, BR-18618689 Botucatu, SP, Brazil
[2] UNESP, Fac Ciencias, Ave Engn Luiz Edmundo Carrijo Coube,14-01, BR-17033360 Bauru, SP, Brazil
[3] UNESP, Dept Matemat, Fac Ciencias, Ave Engn Luiz Edmundo Carrijo Coube,14-01, BR-17033360 Bauru, SP, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2017年 / 36卷 / 03期
关键词
Caputo fractional derivative; Fractional modeling; Fractional calculus; Fractional harmonic oscillator; Fractional logistic equation;
D O I
10.1007/s40314-015-0301-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the modeling via mathematical methods based on fractional calculus, using Caputo fractional derivative. From the fractional models associated with harmonic oscillator, logistic equation and Malthusian growth, an unexpected behavior of the Caputo fractional derivative is discussed. The difference between the rate of variation and the order of the Caputo fractional derivative is explained.
引用
收藏
页码:1173 / 1183
页数:11
相关论文
共 50 条
  • [1] Unexpected behavior of Caputo fractional derivative
    Lucas Kenjy Bazaglia Kuroda
    Arianne Vellasco Gomes
    Robinson Tavoni
    Paulo Fernando de Arruda Mancera
    Najla Varalta
    Rubens de Figueiredo Camargo
    Computational and Applied Mathematics, 2017, 36 : 1173 - 1183
  • [2] Dynamical Behavior of the Glycolysis Model Involving the Fractional Caputo Derivative
    Mesdoui, Fatiha
    Belmahi, Naziha
    Romano, Raffaele
    Cattani, Piercarlo
    Villecco, Francesco
    NEW TECHNOLOGIES, DEVELOPMENT AND APPLICATION VII, VOL 1, NT 2024, 2024, 1069 : 193 - 200
  • [3] Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative
    Wang, Yejuan
    Xu, Jiaohui
    Kloeden, Peter E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 135 : 205 - 222
  • [4] On overall behavior of Maxwell mechanical model by the combined Caputo fractional derivative
    Feng, Yi-Ying
    Yang, Xiao-Jun
    Liu, Jian-Gen
    CHINESE JOURNAL OF PHYSICS, 2020, 66 : 269 - 276
  • [5] Automatic initialization of the Caputo fractional derivative
    Trigeassou, J-C.
    Maamri, N.
    Oustaloup, A.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 3362 - 3368
  • [6] On a Caputo-type fractional derivative
    Oliveira, Daniela S.
    de Oliveira, Edmundo Capelas
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (02) : 81 - 91
  • [7] Incomplete Caputo fractional derivative operators
    Ozarslan, Mehmet Ali
    Ustaoglu, Ceren
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [8] A Fast Algorithm for the Caputo Fractional Derivative
    Wang, Kun
    Huang, Jizu
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (04) : 656 - 677
  • [9] Incomplete Caputo fractional derivative operators
    Mehmet Ali Özarslan
    Ceren Ustaoglu
    Advances in Difference Equations, 2018
  • [10] Fractional Telegraph Equation with the Caputo Derivative
    Ashurov, Ravshan
    Saparbayev, Rajapboy
    FRACTAL AND FRACTIONAL, 2023, 7 (06)