Unexpected behavior of Caputo fractional derivative

被引:16
作者
Bazaglia Kuroda, Lucas Kenjy [1 ]
Gomes, Arianne Vellasco [2 ]
Tavoni, Robinson [1 ]
de Arruda Mancera, Paulo Fernando [1 ]
Varalta, Najla [2 ]
Camargo, Rubens de Figueiredo [3 ]
机构
[1] UNESP, Inst Biociencias, Dept Bioestat, BR-18618689 Botucatu, SP, Brazil
[2] UNESP, Fac Ciencias, Ave Engn Luiz Edmundo Carrijo Coube,14-01, BR-17033360 Bauru, SP, Brazil
[3] UNESP, Dept Matemat, Fac Ciencias, Ave Engn Luiz Edmundo Carrijo Coube,14-01, BR-17033360 Bauru, SP, Brazil
关键词
Caputo fractional derivative; Fractional modeling; Fractional calculus; Fractional harmonic oscillator; Fractional logistic equation;
D O I
10.1007/s40314-015-0301-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the modeling via mathematical methods based on fractional calculus, using Caputo fractional derivative. From the fractional models associated with harmonic oscillator, logistic equation and Malthusian growth, an unexpected behavior of the Caputo fractional derivative is discussed. The difference between the rate of variation and the order of the Caputo fractional derivative is explained.
引用
收藏
页码:1173 / 1183
页数:11
相关论文
共 36 条
[1]   Dynamics, Chaos Control, and Synchronization in a Fractional-Order Samardzija-Greller Population System with Order Lying in (0,2) [J].
Al-khedhairi, A. ;
Askar, S. S. ;
Matouk, A. E. ;
Elsadany, A. ;
Ghazel, M. .
COMPLEXITY, 2018,
[2]  
[Anonymous], 2009, FRACTIONAL CALCULUS
[3]  
[Anonymous], 2010, J NONLINEAR SYST APP
[4]  
[Anonymous], J MATH PHYS
[5]  
[Anonymous], J FRACT CALC APPL
[6]  
[Anonymous], COMPUT METHODS APPL
[7]  
[Anonymous], 2010, FRAC CAL APPL ANAL
[8]  
[Anonymous], 1838, CORRESP MATH PHYS, DOI 10.1007/bf02309004
[9]  
Arafa Aam, 2012, Nonlinear Biomed Phys, V6, P1, DOI 10.1186/1753-4631-6-1
[10]   Differentiation to fractional orders and the fractional telegraph equation [J].
Camargo, R. Figueiredo ;
Chiacchio, Ary O. ;
de Oliveira, E. Capelas .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)