PepBio: predicting the bioactivity of host defense peptides

被引:10
作者
Simeon, Saw [1 ,2 ]
Li, Hao [1 ]
Win, Thet Su [1 ]
Malik, Aijaz Ahmad [1 ]
Kandhro, Abdul Hafeez [1 ,3 ]
Piacham, Theeraphon [4 ]
Shoombuatong, Watshara [1 ]
Nuchnoi, Pornlada [3 ]
Wikberg, Jarl E. S. [5 ]
Gleeson, M. Paul [6 ]
Nantasenamat, Chanin [1 ]
机构
[1] Mahidol Univ, Ctr Data Min & Biomed Informat, Fac Med Technol, Bangkok 10700, Thailand
[2] Kasetsart Univ, Fac Sci, Interdisciplinary Grad Program Biosci, Bangkok 10900, Thailand
[3] Mahidol Univ, Ctr Res & Innovat, Fac Med Technol, Bangkok 10700, Thailand
[4] Mahidol Univ, Dept Clin Microbiol & Appl Technol, Fac Med Technol, Bangkok 10700, Thailand
[5] Uppsala Univ, Dept Pharmaceut Biosci, SE-75124 Uppsala, Sweden
[6] King Mongkuts Inst Technol Ladkrabang, Dept Biomed Engn, Fac Engn, Bangkok 10520, Thailand
基金
瑞典研究理事会;
关键词
RICH ANTIMICROBIAL PEPTIDES; ALPHA-HELICAL PEPTIDES; ANTICANCER PEPTIDES; IMMUNE-RESPONSE; PROPOSED ROLE; TUMOR-CELLS; WEB SERVER; DESCRIPTORS; TRYPTOPHAN; THREONINE;
D O I
10.1039/c7ra01388d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Host defense peptides (HDPs) represents a class of ubiquitous and rapid responding immune molecules capable of direct inactivation of a wide range of pathogens. Recent research has shown HDPs to be promising candidates for development as a novel class of broad-spectrum chemotherapeutic agent that is effective against both pathogenic microbes and malignant neoplasm. This study aims to quantitatively explore the relationship between easy-to-interpret amino acid composition descriptors of HDPs with their respective bioactivities. Classification models were constructed using the C4.5 decision tree and random forest classifiers. Good predictive performance was achieved as deduced from the accuracy, sensitivity and specificity in excess of 90% and Matthews correlation coefficient in excess of 0.5 for all three evaluated data subsets (e.g. training, 10-fold cross-validation and external validation sets). The source code and data set used for the construction of classification models are available on GitHub at https://github.com/chaninn/pepbio/.
引用
收藏
页码:35119 / 35134
页数:16
相关论文
共 86 条
[1]   Overlap and diversity in antimicrobial peptide databases: compiling a non-redundant set of sequences [J].
Aguilera-Mendoza, Longendri ;
Marrero-Ponce, Yovani ;
Tellez-Ibarra, Roberto ;
Llorente-Quesada, Monica T. ;
Salgado, Jesus ;
Barigye, Stephen J. ;
Liu, Jun .
BIOINFORMATICS, 2015, 31 (15) :2553-2559
[2]  
Akkam Y., 2016, JORDAN J PHARM SCI, V9, P51
[3]   Oncolytic Activities of Host Defense Peptides [J].
Al-Benna, Sammy ;
Shai, Yechiel ;
Jacobsen, Frank ;
Steinstraesser, Lars .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2011, 12 (11) :8027-8051
[4]   Targeting MDR in breast and lung cancer: Discriminating its potential importance from the failure of drug resistance reversal studies [J].
Amiri-Kordestani, Laleh ;
Basseville, Agnes ;
Kurdziel, Karen ;
Fojo, Antonio Tito ;
Bates, Susan E. .
DRUG RESISTANCE UPDATES, 2012, 15 (1-2) :50-61
[5]   Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil [J].
Ashwanikumar, Narayanan ;
Kumar, Nisha Asok ;
Babu, Padma S. Saneesh ;
Sivakumar, Krishnankutty C. ;
Vadakkan, Mithun Varghese ;
Nair, Parvathi ;
Saranya, Ilamathi Hema ;
Nair, Sivakumari Asha ;
Kumar, Gopalakrishnapillai S. Vinod .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2016, 11 :5583-5594
[6]  
Berg J. M., 2002, Biochemistry, V5th
[7]   EFFECTS OF THREONINE ON GROWTH AND ANTIBODY PRODUCTION IN CHICKS INFECTED WITH NEWCASTLE DISEASE VIRUS [J].
BHARGAVA, KK ;
HANSON, RP ;
SUNDE, ML .
POULTRY SCIENCE, 1971, 50 (03) :710-&
[8]   Structural and functional characterization of the porcine proline-rich antifungal peptide SP-B isolated from salivary gland granules [J].
Cabras, T. ;
Longhi, R. ;
Secundo, F. ;
Nocca, G. ;
Conti, S. ;
Polonelli, I. ;
Fanali, C. ;
Inzitari, R. ;
Petruzzelli, R. ;
Messana, I. ;
Castagnola, M. ;
Vitali, A. .
JOURNAL OF PEPTIDE SCIENCE, 2008, 14 (03) :251-260
[9]   Analysis and Prediction of Highly Effective Antiviral Peptides Based on Random Forests [J].
Chang, Kuan Y. ;
Yang, Je-Ruei .
PLOS ONE, 2013, 8 (08)
[10]  
Chen C., 2004, USING RANDOM FOREST, V110, P24