Temporal and spatial design of x-ray pulses based on free-electron-crystal interaction

被引:14
作者
Balanov, Amnon [1 ]
Gorlach, Alexey [1 ]
Kaminer, Ido [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-3200003 Haifa, Israel
基金
以色列科学基金会;
关键词
ENERGY-LOSS; TRANSMISSION; GENERATION; RADIATION; OPERATION; LASER; PXR;
D O I
10.1063/5.0041809
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Tunable x-ray radiation sources are of wide importance for imaging and spectroscopy in fundamental science, medicine, and industry. The growing demand for highly tunable, high-brightness lab-scale x-ray sources motivates research of new mechanisms of x-ray generation. Parametric x-ray radiation (PXR) is a mechanism for tunable x-ray radiation from free electrons traversing crystalline materials. Although PXR has been investigated over decades, it remained limited in usages due to the low flux and strict dependence on fixed crystal properties. Here, we find new effects hiding in the PXR mechanisms, which provide control over the radiation polarization and spatial and temporal distribution. The radiation can form ultrashort pulses and delta-pulse trains, which makes the new effects fundamentally different from all conventional mechanisms of x-ray generation. We show how these new effects can be created from free-electron interactions with van der Waals materials. Furthermore, we consider free electrons traversing near material edges, which provides an additional degree of tunability in angular distribution and polarization of PXR. Our findings enable us to utilize recent breakthroughs in the atomic-scale design of 2D material heterostructures to provide platforms for creating tunable x-ray pulses.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Operation of a free-electron laser from the extreme ultraviolet to the water window [J].
Ackermann, W. ;
Asova, G. ;
Ayvazyan, V. ;
Azima, A. ;
Baboi, N. ;
Baehr, J. ;
Balandin, V. ;
Beutner, B. ;
Brandt, A. ;
Bolzmann, A. ;
Brinkmann, R. ;
Brovko, O. I. ;
Castellano, M. ;
Castro, P. ;
Catani, L. ;
Chiadroni, E. ;
Choroba, S. ;
Cianchi, A. ;
Costello, J. T. ;
Cubaynes, D. ;
Dardis, J. ;
Decking, W. ;
Delsim-Hashemi, H. ;
Delserieys, A. ;
Di Pirro, G. ;
Dohlus, M. ;
Duesterer, S. ;
Eckhardt, A. ;
Edwards, H. T. ;
Faatz, B. ;
Feldhaus, J. ;
Floettmann, K. ;
Frisch, J. ;
Froehlich, L. ;
Garvey, T. ;
Gensch, U. ;
Gerth, Ch. ;
Goerler, M. ;
Golubeva, N. ;
Grabosch, H.-J. ;
Grecki, M. ;
Grimm, O. ;
Hacker, K. ;
Hahn, U. ;
Han, J. H. ;
Honkavaara, K. ;
Hott, T. ;
Huening, M. ;
Ivanisenko, Y. ;
Jaeschke, E. .
NATURE PHOTONICS, 2007, 1 (06) :336-342
[2]  
Baryshevsky V., 2005, SPRINGER TRACTS MODE, V213, P1
[4]   Quantitative Agreement between Electron-Optical Phase Images of WSe2 and Simulations Based on Electrostatic Potentials that Include Bonding Effects [J].
Borghardt, S. ;
Winkler, F. ;
Zanolli, Z. ;
Verstraete, M. J. ;
Barthel, J. ;
Tavabi, A. H. ;
Dunin-Borkowski, R. E. ;
Kardynal, B. E. .
PHYSICAL REVIEW LETTERS, 2017, 118 (08)
[5]   Perspective - Tunable monochromatic X rays: A new paradigm in medicine [J].
Carroll, FE .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2002, 179 (03) :583-590
[6]   Resonant phase-matching between a light wave and a free-electron wavefunction [J].
Dahan, Raphael ;
Nehemia, Saar ;
Shentcis, Michael ;
Reinhardt, Ori ;
Adiv, Yuval ;
Shi, Xihang ;
Be'er, Orr ;
Lynch, Morgan H. ;
Kurman, Yaniv ;
Wang, Kangpeng ;
Kaminer, Ido .
NATURE PHYSICS, 2020, 16 (11) :1123-+
[7]  
de Groot F, 2008, ADV CONDENS MAT SCI, V6, P1
[8]  
Emma P, 2010, NAT PHOTONICS, V4, P641, DOI [10.1038/NPHOTON.2010.176, 10.1038/nphoton.2010.176]
[9]   Intense Superradiant X Rays from a Compact Source Using a Nanocathode Array and Emittance Exchange [J].
Graves, W. S. ;
Kaertner, F. X. ;
Moncton, D. E. ;
Piot, P. .
PHYSICAL REVIEW LETTERS, 2012, 108 (26)
[10]  
Griffiths DJ, 2013, INTRO ELECTRODYNAMIC