The max-plus algebra of exponent matrices of tiled orders

被引:2
|
作者
Dokuchaev, Mikhailo [1 ]
Kirichenko, Vladimir [2 ]
Kudryavtseva, Ganna [3 ]
Plakhotnyk, Makar [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Caixa Postal 66281, BR-05315970 Sao Paulo, SP, Brazil
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Volodymyrska Str,64, UA-01033 Kiev, Ukraine
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Jamova Cesta 2, SI-1000 Ljubljana, Slovenia
基金
巴西圣保罗研究基金会;
关键词
Exponent matrix; Max-plus algebra; Tiled order; LARGE GLOBAL DIMENSION; FINITE LATTICE TYPE; 3-PARTITE SUBAMALGAMS; GORENSTEIN; TAMENESS; RINGS; FORM;
D O I
10.1016/j.jalgebra.2017.05.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponent matrix is an n x n matrix A = (a(ij)) over N-0 satisfying (1) a(ii) = 0 for all i = 1, ... , n and (2) a(ij) + a(jk) >= a(ik) for all pairwise distinct i, j, k is an element of{1, ... , n}. In the present paper we study the set epsilon(n) of all non-negative n x n exponent matrices as an algebra with the operations circle plus of component-wise maximum and circle dot of component-wise addition. We provide a basis of the algebra (epsilon(n), circle plus, circle dot, 0) and give a row and a column decompositions of a matrix A is an element of epsilon(n) with respect to this basis. This structure result determines all n x n-tiled orders over a fixed discrete valuation domain. We also study automorphisms of epsilon(n) with respect to each of the operations circle plus and circle dot and prove that Aut(epsilon(n), circle plus, circle dot, 0) congruent to Aut(epsilon(n), circle plus) congruent to Aut(epsilon(n), circle dot) congruent to S-n X C-2, n > 2. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [41] Application of an optimization problem in Max-Plus algebra to scheduling problems
    Bouquard, J. -L.
    Lente, C.
    Billaut, J. -C.
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (15) : 2064 - 2079
  • [42] On the properties of the greatest subsolution for linear equations in the max-plus algebra
    Goto, H
    Masuda, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (02) : 424 - 432
  • [43] Trivial and Nontrivial Eigenvectors for Latin Squares in Max-Plus Algebra
    Abbas, Fazal
    Umer, Mubasher
    Hayat, Umar
    Ullah, Ikram
    SYMMETRY-BASEL, 2022, 14 (06):
  • [44] Reachability analysis for timed automata using max-plus algebra
    Lu, Qi
    Madsen, Michael
    Milata, Martin
    Ravn, Soren
    Fahrenberg, Uli
    Larsen, Kim G.
    JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING, 2012, 81 (03): : 298 - 313
  • [45] On large scale max-plus algebra models in railway systems
    Olsder, GJ
    Subiono
    SYSTEM STRUCTURE AND CONTROL 1998 (SSC'98), VOLS 1 AND 2, 1998, : 649 - 653
  • [46] A polynomial algorithm for solving system of inequalities in max-plus algebra
    Wang, Hui-li
    Wang, Xue-ping
    INFORMATION SCIENCES, 2015, 318 : 1 - 13
  • [47] Matrix representation of formal polynomials over max-plus algebra
    Wang, Cailu
    Tao, Yuegang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (11)
  • [48] Latency estimation of the asynchronous pipeline using the max-plus algebra
    Ruan, Jian
    Wang, Zhiying
    Dai, Kui
    Li, Yong
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 251 - +
  • [49] Weakly linear systems for matrices over the max-plus quantale
    Stamenkovic, Aleksandar
    Ciric, Miroslav
    Djurdjanovic, Dragan
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2022, 32 (01): : 1 - 25
  • [50] Weakly linear systems for matrices over the max-plus quantale
    Aleksandar Stamenković
    Miroslav Ćirić
    Dragan Djurdjanović
    Discrete Event Dynamic Systems, 2022, 32 : 1 - 25