The max-plus algebra of exponent matrices of tiled orders

被引:2
|
作者
Dokuchaev, Mikhailo [1 ]
Kirichenko, Vladimir [2 ]
Kudryavtseva, Ganna [3 ]
Plakhotnyk, Makar [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Caixa Postal 66281, BR-05315970 Sao Paulo, SP, Brazil
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Volodymyrska Str,64, UA-01033 Kiev, Ukraine
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Jamova Cesta 2, SI-1000 Ljubljana, Slovenia
基金
巴西圣保罗研究基金会;
关键词
Exponent matrix; Max-plus algebra; Tiled order; LARGE GLOBAL DIMENSION; FINITE LATTICE TYPE; 3-PARTITE SUBAMALGAMS; GORENSTEIN; TAMENESS; RINGS; FORM;
D O I
10.1016/j.jalgebra.2017.05.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponent matrix is an n x n matrix A = (a(ij)) over N-0 satisfying (1) a(ii) = 0 for all i = 1, ... , n and (2) a(ij) + a(jk) >= a(ik) for all pairwise distinct i, j, k is an element of{1, ... , n}. In the present paper we study the set epsilon(n) of all non-negative n x n exponent matrices as an algebra with the operations circle plus of component-wise maximum and circle dot of component-wise addition. We provide a basis of the algebra (epsilon(n), circle plus, circle dot, 0) and give a row and a column decompositions of a matrix A is an element of epsilon(n) with respect to this basis. This structure result determines all n x n-tiled orders over a fixed discrete valuation domain. We also study automorphisms of epsilon(n) with respect to each of the operations circle plus and circle dot and prove that Aut(epsilon(n), circle plus, circle dot, 0) congruent to Aut(epsilon(n), circle plus) congruent to Aut(epsilon(n), circle dot) congruent to S-n X C-2, n > 2. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] On a generalization of power algorithms over max-plus algebra
    Fahim, Kistosil
    Subiono
    van der Woude, Jacob
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2017, 27 (01): : 181 - 203
  • [32] Max-plus algebra in the history of discrete event systems
    Komenda, J.
    Lahaye, S.
    Boimond, J. -L.
    van den Boom, T.
    ANNUAL REVIEWS IN CONTROL, 2018, 45 : 240 - 249
  • [33] Tolerance types of interval eigenvectors in max-plus algebra
    Gavalec, M.
    Plavka, J.
    Ponce, D.
    INFORMATION SCIENCES, 2016, 367 : 14 - 27
  • [34] Extremality criteria for the supereigenvector space in max-plus algebra
    Sergeev, Sergei
    Wang, Hui-li
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 653 : 116 - 134
  • [35] Application of Max-Plus algebra to biological sequence comparisons
    Comet, JP
    THEORETICAL COMPUTER SCIENCE, 2003, 293 (01) : 189 - 217
  • [36] SPARSITY IN MAX-PLUS ALGEBRA AND APPLICATIONS IN MULTIVARIATE CONVEX REGRESSION
    Tsilivis, Nikos
    Tsiamis, Anastasios
    Maragos, Petros
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2985 - 2989
  • [37] Computing an eigenvector of an inverse Monge matrix in max-plus algebra
    Imaev, Aleksey A.
    Judd, Robert P.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1701 - 1707
  • [38] GENERALIZED PUBLIC TRANSPORTATION SCHEDULING USING MAX-PLUS ALGEBRA
    Subiono
    Fahim, Kistosil
    Adzkiya, Dieky
    KYBERNETIKA, 2018, 54 (02) : 243 - 267
  • [39] Applications of max-plus algebra to flow shop scheduling problems
    Kubo, Susumu
    Nishinari, Katsuhiro
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 278 - 293
  • [40] Independence and orthogonality of algebraic eigenvectors over the max-plus algebra
    Nishida, Yuki
    Watanabe, Sennosuke
    Watanabe, Yoshihide
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (01) : 87 - 105