The max-plus algebra of exponent matrices of tiled orders

被引:2
|
作者
Dokuchaev, Mikhailo [1 ]
Kirichenko, Vladimir [2 ]
Kudryavtseva, Ganna [3 ]
Plakhotnyk, Makar [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Caixa Postal 66281, BR-05315970 Sao Paulo, SP, Brazil
[2] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, Volodymyrska Str,64, UA-01033 Kiev, Ukraine
[3] Univ Ljubljana, Fac Civil & Geodet Engn, Jamova Cesta 2, SI-1000 Ljubljana, Slovenia
基金
巴西圣保罗研究基金会;
关键词
Exponent matrix; Max-plus algebra; Tiled order; LARGE GLOBAL DIMENSION; FINITE LATTICE TYPE; 3-PARTITE SUBAMALGAMS; GORENSTEIN; TAMENESS; RINGS; FORM;
D O I
10.1016/j.jalgebra.2017.05.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponent matrix is an n x n matrix A = (a(ij)) over N-0 satisfying (1) a(ii) = 0 for all i = 1, ... , n and (2) a(ij) + a(jk) >= a(ik) for all pairwise distinct i, j, k is an element of{1, ... , n}. In the present paper we study the set epsilon(n) of all non-negative n x n exponent matrices as an algebra with the operations circle plus of component-wise maximum and circle dot of component-wise addition. We provide a basis of the algebra (epsilon(n), circle plus, circle dot, 0) and give a row and a column decompositions of a matrix A is an element of epsilon(n) with respect to this basis. This structure result determines all n x n-tiled orders over a fixed discrete valuation domain. We also study automorphisms of epsilon(n) with respect to each of the operations circle plus and circle dot and prove that Aut(epsilon(n), circle plus, circle dot, 0) congruent to Aut(epsilon(n), circle plus) congruent to Aut(epsilon(n), circle dot) congruent to S-n X C-2, n > 2. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] On exponent matrices of tiled orders
    Dokuchaev, M.
    Kirichenko, V.
    Plakhotnyk, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (10)
  • [2] Eigenvectors of interval matrices over max-plus algebra
    Cechlárová, K
    DISCRETE APPLIED MATHEMATICS, 2005, 150 (1-3) : 2 - 15
  • [3] Eigenproblem for optimal-node matrices in max-plus algebra
    Wang, Hui-li
    Wang, Xue-ping
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (08) : 1105 - 1113
  • [4] A walk on max-plus algebra
    Watanabe, Sennosuke
    Fukuda, Akiko
    Segawa, Etsuo
    Sato, Iwao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 598 : 29 - 48
  • [5] The cone of quasi-semimetrics and exponent matrices of tiled orders
    Dokuchaev, Mikhailo
    Mandel, Arnaldo
    Plakhotnyk, Makar
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [6] Exponent matrices and tiled orders over discrete valuation rings
    Kirichenko, VV
    Zelensky, AV
    Zhuravlev, VN
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (5-6) : 997 - 1012
  • [7] Memory Loss Property for Products of Random Matrices in the Max-Plus Algebra
    Merlet, Glenn
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (01) : 160 - 172
  • [8] Polynomial convolutions in max-plus algebra
    Rosenmann, Amnon
    Lehner, Franz
    Peperko, Aljosa
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 370 - 401
  • [9] Sparsity in max-plus algebra and systems
    Tsiamis, Anastasios
    Maragos, Petros
    DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 2019, 29 (02): : 163 - 189
  • [10] Max-plus algebra at road transportation
    Pesko, Stefan
    Turek, Michal
    Turek, Richard
    PROCEEDINGS OF 30TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS, PTS I AND II, 2012, : 703 - +