An infinite 2-D lattice of strange attractors

被引:99
作者
Li, Chunbiao [1 ,2 ]
Sprott, Julien Clinton [3 ]
Mei, Yong [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Meteorol Observat & Informat Proc, Nanjing 210044, Jiangsu, Peoples R China
[3] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
关键词
Offset boosting; Multistability; Infinitely many attractors; SECURE COMMUNICATION; MULTIPLE ATTRACTORS; CHAOTIC ATTRACTORS; HIDDEN ATTRACTORS; LABYRINTH CHAOS; MULTISTABILITY; SYSTEMS; SYNCHRONIZATION; BIFURCATIONS; OSCILLATORS;
D O I
10.1007/s11071-017-3612-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Periodic trigonometric functions are introduced in 2-D offset-boostable chaotic flows to generate an infinite 2-D lattice of strange attractors. These 2-D offset-boostable chaotic systems are constructed based on standard jerk flows and extended to more general systems by exhaustive computer searching. Two regimes of multistability with a lattice of strange attractors are explored where the infinitely many attractors come from a 2-D offset-boostable chaotic system in cascade or in an interactive mode.
引用
收藏
页码:2629 / 2639
页数:11
相关论文
共 54 条
[1]   Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feed back systems [J].
Angeli, D ;
Ferrell, JE ;
Sontag, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (07) :1822-1827
[2]   Multistability in Chua's circuit with two stable node-foci [J].
Bao, B. C. ;
Li, Q. D. ;
Wang, N. ;
Xu, Q. .
CHAOS, 2016, 26 (04)
[3]   Extreme multistability in a memristive circuit [J].
Bao, Bo-Cheng ;
Xu, Quan ;
Bao, Han ;
Chen, Mo .
ELECTRONICS LETTERS, 2016, 52 (12) :1008-1009
[4]   Qualitative analysis of the Rossler equations: Bifurcations of limit cycles and chaotic attractors [J].
Barrio, Roberto ;
Blesa, Fernando ;
Serrano, Sergio .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (13) :1087-1100
[5]   Hyperlabyrinth chaos: From chaotic walks to spatiotemporal chaos [J].
Chlouverakis, Konstantinos E. ;
Sprott, J. C. .
CHAOS, 2007, 17 (02)
[6]   Multistability and delayed recurrent loops [J].
Foss, J ;
Longtin, A ;
Mensour, B ;
Milton, J .
PHYSICAL REVIEW LETTERS, 1996, 76 (04) :708-711
[7]   Question # 38. What is the simplest jerk function that gives chaos? [J].
Gottlieb, HPW .
AMERICAN JOURNAL OF PHYSICS, 1996, 64 (05) :525-525
[8]  
Hens CR, 2012, PHYS REV E, V85, DOI 10.1103/PhysRevE.85.035202
[9]   SOME SIMPLE CHAOTIC FLOWS - REMARK [J].
HOOVER, WG .
PHYSICAL REVIEW E, 1995, 51 (01) :759-760
[10]   Recent new examples of hidden attractors [J].
Jafari, S. ;
Sprott, J. C. ;
Nazarimehr, F. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08) :1469-1476