Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator

被引:4
作者
Chen, Lanxin [1 ]
Zhang, Junxian [1 ]
Saleem, Muhammad Shoaib [2 ]
Ahmed, Imran [3 ]
Waheed, Shumaila [2 ]
Pan, Lishuang [1 ]
机构
[1] Shijiazhuang Univ, Sci Coll, Shijiazhuang 050035, Hebei, Peoples R China
[2] Univ Okara, Dept Math, Okara, Pakistan
[3] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore, Pakistan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 06期
关键词
Capoto-Fabrizio fractional operator; h-convexity; Hermite-Hadamard type inequality; DIFFUSION; HADAMARD; MEMORY;
D O I
10.3934/math.2021374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study h convex functions and present some inequalities of Caputo-Fabrizio fractional operator. Precisely speaking, we presented Hermite-Hadamard type inequality via h convex function involving Caputo-Fabrizio fractional operator. We also presented some new inequalities for the class of h convex functions. Moreover, we also presented some applications of our results in special means which play a significant role in applied and pure mathematics, especially the accuracy of a results can be confirmed by through special means.
引用
收藏
页码:6377 / 6389
页数:13
相关论文
共 31 条
[1]   Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations [J].
Ahmad, Hijaz ;
Seadawy, Aly R. ;
Khan, Tufail A. ;
Thounthong, Phatiphat .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01) :346-358
[2]   Numerical study of integer-order hyperbolic telegraph model arising in physical and related sciences [J].
Ahmad, Imtiaz ;
Ahmad, Hijaz ;
Abouelregal, Ahmed E. ;
Thounthong, Phatiphat ;
Abdel-Aty, M. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (09)
[3]  
Al-Gonah A. A, ENG APPL SCI LETT, V4, P30
[4]   A mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the Rubella disease model [J].
Baleanu, Dumitru ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[5]  
Caputo M., 2015, Prog. Fract. Differ. Appl, V1, P73, DOI [DOI 10.12785/PFDA/010201, 10.12785/pfda/010201]
[6]  
Caputo M, 2016, SUDEUROPA QUADRIMEST, V1, P1
[7]   Diffusion with memory in two cases of biological interest [J].
Caputo, Michele ;
Cametti, Cesare .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 254 (03) :697-703
[8]   Memory formalism in the passive diffusion across highly heterogeneous systems [J].
Cesarone, F ;
Caputo, M ;
Cametti, C .
JOURNAL OF MEMBRANE SCIENCE, 2005, 250 (1-2) :79-84
[9]   Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals [J].
Chen, Hua ;
Katugampola, Udita N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) :1274-1291
[10]  
Das S, 2011, FUNCTIONAL FRACTIONAL CALCULUS, SECOND EDITION, P1, DOI 10.1007/978-3-642-20545-3