Evaluation of Neuropathological Features in the SOD1-G93A Low Copy Number Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

被引:4
|
作者
Molnar-Kasza, Agnes [1 ]
Hinteregger, Barbara [1 ]
Neddens, Joerg [1 ]
Rabl, Roland [1 ]
Flunkert, Stefanie [1 ]
Hutter-Paier, Birgit [1 ]
机构
[1] QPS Austria GmbH, Grambach, Austria
来源
关键词
neuroinflammation; muscle phenotype; spinal cord; survival rate; muscle strength; body weight; PROLONG SURVIVAL; SPINAL-CORD; MICE;
D O I
10.3389/fnmol.2021.681868
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Amyotrophic lateral sclerosis (ALS) still depicts an incurable and devastating disease. Drug development efforts are mostly based on superoxide dismutase 1 gene (SOD1)-G93A mice that present a very strong and early phenotype, allowing only a short time window for intervention. An alternative mouse model is available, that is based on the same founder line but has a reduced SOD1-G93A copy number, resulting in a weaker and delayed phenotype. To be able to use these SOD1-G93A/low mice for drug testing, we performed a characterization of ALS-typical pathologies. All analyses were performed compared to non-transgenic (ntg) littermates of the same sex and age. In vivo analysis of SOD1-G93A/low mice was performed by weekly body weight measurements, analysis of the survival rate, and measurement of the muscle strength of 24-30 weeks old female and male SOD1-G93A/low mice. Immunofluorescent labeling of SOD1, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba1) protein was performed in the cervical, thoracic, and lumbar ventral horn of the spinal cord of 24-30 weeks old male and female SOD1-G93A/low mice. The musculus gastrocnemius of male SOD1-G93A/low mice was labeled with fluorophore-conjugated alpha-bungarotoxin and antibodies against phosphorylated neurofilaments. Fluorescent labeling was detected and quantified by macro-based image analysis. Although SOD1 protein levels were highly increased in both sexes and all age groups, levels strongly peaked in 30 weeks old male SOD1-G93A/low mice. Astrocytosis and activated microglia in the spinal cord ventral horn and phosphorylated neurofilaments in the motor unit of the musculus gastrocnemius progressively increased, while muscle strength progressively decreased in male SOD1-G93A/low mice. In female SOD1-G93A/low mice, only activated microglia increased progressively, while muscle strength was constantly reduced starting at 26 weeks. These differences result in a shorter survival time of male SOD1-G93A/low mice of about 3 weeks compared to female animals. The results suggest that male SOD1-G93A/low mice present a stronger pathology and are, therefore, better suitable to evaluate the efficacy of new drugs against ALS as most pathological features are developing progressively paralleled by a survival time that allows treatment to start before symptom onset.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis
    Apolloni, Savina
    Amadio, Susanna
    Montilli, Cinzia
    Volonte, Cinzia
    D'Ambrosi, Nadia
    HUMAN MOLECULAR GENETICS, 2013, 22 (20) : 4102 - 4116
  • [42] Immunohistochemical analysis reveals sympathetic column involvement in the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis
    Kandinov, B.
    Korczyn, A. D.
    Drory, V. E.
    Offen, D.
    Grigoriadis, N. C.
    Touloumi, O. Olga
    EUROPEAN JOURNAL OF NEUROLOGY, 2012, 19 : 126 - 126
  • [43] Immunohistochemical Analysis Reveals Sympathetic Column Involvement in the SOD1 (G93A) Transgenic Mouse Model of Amyotrophic Lateral Sclerosis
    Kandinov, Boris
    Grigoriadis, Nikolaos
    Touloumi, Olga
    Drory, Vivian
    Offen, Daniel
    Korczyn, Amos
    NEUROLOGY, 2013, 80
  • [44] Early and selective death of large motoneurons in the SOD1 G93A transgenic mouse model of familial amyotrophic lateral sclerosis
    Hegedus, J
    Sharp, PS
    Gordon, T
    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, 2005, 10 : 32 - 32
  • [45] Therapeutic effects of hirsutella sinensis on the disease onset and progression of amyotrophic lateral sclerosis in SOD1G93A transgenic mouse model
    Shang, Hai-Yan
    Zhang, Jing-Jing
    Fu, Zhen-Fa
    Liu, Yu-Fei
    Li, Song
    Chen, Sheng
    Le, Wei-Dong
    CNS NEUROSCIENCE & THERAPEUTICS, 2020, 26 (01) : 90 - 100
  • [46] Optimised and Rapid Pre-clinical Screening in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis (ALS)
    Mead, Richard J.
    Bennett, Ellen J.
    Kennerley, Aneurin J.
    Sharp, Paul
    Sunyach, Claire
    Kasher, Paul
    Berwick, Jason
    Pettmann, Brigitte
    Battaglia, Guiseppe
    Azzouz, Mimoun
    Grierson, Andrew
    Shaw, Pamela J.
    PLOS ONE, 2011, 6 (08):
  • [47] Effects of Tongue Force Training on Bulbar Motor Function in the Female SOD1-G93A Rat Model of Amyotrophic Lateral Sclerosis
    Ma, Delin
    Shuler, Jeffrey M.
    Kumar, Aishwarya
    Stanford, Quincy R.
    Tungtur, Sudheer
    Nishimune, Hiroshi
    Stanford, John A.
    NEUROREHABILITATION AND NEURAL REPAIR, 2017, 31 (02) : 147 - 156
  • [48] Erythropoietin modulates the immune-inflammatory response of a SOD1G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS)
    Noh, Min Young
    Cho, Kyung Ah
    Kim, Heejaung
    Kim, Sung-Min
    Kim, Seung Hyun
    NEUROSCIENCE LETTERS, 2014, 574 : 53 - 58
  • [49] Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis
    Apolloni, Savina
    Fabbrizio, Paola
    Amadio, Susanna
    Napoli, Giulia
    Verdile, Veronica
    Morello, Giovanna
    Iemmolo, Rosario
    Aronica, Eleonora
    Cavallaro, Sebastiano
    Volonte, Cinzia
    FRONTIERS IN IMMUNOLOGY, 2017, 8
  • [50] Sex and HDAC4 Differently Affect the Pathophysiology of Amyotrophic Lateral Sclerosis in SOD1-G93A Mice
    Renzini, Alessandra
    Pigna, Eva
    Rocchi, Marco
    Cedola, Alessia
    Gigli, Giuseppe
    Moresi, Viviana
    Coletti, Dario
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)