Robust and Highly Conductive PEDOT:PSS:Ag Nanowires/Polyethyleneimine Multilayers Based on Ionic Layer-by-Layer Assembly for E-Textiles and 3D Electronics

被引:5
作者
Kim, Seung Hyun [1 ]
Ko, Heung Cho [1 ]
机构
[1] Gwangju Inst Sci & Technol GIST, Sch Mat Sci & Engn, Gwangju 61005, South Korea
基金
新加坡国家研究基金会;
关键词
PEDOT:PSS/PEI multilayers; layer-by-layer assembly; water-assisted welding; E-textile; 3D electronics; ELECTRICAL-CONDUCTIVITY; THIN-FILMS; THERMOELECTRIC PERFORMANCE; TRANSPARENT ELECTRODE; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); IMPROVEMENT; ENHANCEMENT; REDUCTION; MECHANISM; MEMBRANES;
D O I
10.1021/acsaelm.2c00219
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study shows the production of robust and highly conductive multilayers through the layer-by-layer (LBL) assembly of poly(3,4-ethylenedioxythiophene):poly( styrenesulfonate) (PE-DOT:PSS):Ag nanowires and counterionic compounds, including monomeric tris(2-aminoethyl)amine and chitosan and polyethylenimine (PEI). These materials provide a strong electrostatic interaction with PEDOT:PSS and enable a reliable interface between the layers during the LBL process. Systematic chemical and electrical analyses of the multilayers reveal that the use of PEI results in the highest electrical conductivity (2034 S cm(-1) at six LBL cycles) and interfacial adhesion (8.9 mN at the tearing stress). Furthermore, the use of PEI generates a powerful interconnection for electrical circuit patterns with low contact resistance (similar to 5 Omega) and robust mechanical durability during the water-assisted welding process. Finally, we successfully show the use of this material in electronic textile applications and 3D electronics based on water-assisted welding and transfer printing technology to confirm its feasibility for use in device applications.
引用
收藏
页码:2413 / 2423
页数:11
相关论文
共 79 条
[1]   Conductive wood microfibres for smart paper through layer-by-layer nanocoating [J].
Agarwal, Mangilal ;
Lvov, Yuri ;
Varahramyan, Kody .
NANOTECHNOLOGY, 2006, 17 (21) :5319-5325
[2]   Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells [J].
Alemu, Desalegn ;
Wei, Hung-Yu ;
Ho, Kuo-Chuan ;
Chu, Chih-Wei .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9662-9671
[3]   PEDOT:PSS self-assembled films to methanol crossover reduction in Nafion® membranes [J].
Almeida, Tiago P. ;
Miyazaki, Celina M. ;
Paganin, Valdecir A. ;
Ferreira, Marystela ;
Saeki, Margarida J. ;
Perez, Joelma ;
Riul, Antonio, Jr. .
APPLIED SURFACE SCIENCE, 2014, 323 :7-12
[4]   Highly Conductive Poly(3,4-ethylenedioxythiophene):Poly (styrenesulfonate) Films Using 1-Ethyl-3-methylimidazolium Tetracyanoborate Ionic Liquid [J].
Badre, Chantal ;
Marquant, Ludovic ;
Alsayed, Ahmed M. ;
Hough, Lawrence A. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (13) :2723-2727
[5]   All-Polymeric Pressure Sensors Based on PEDOT:PSS-Modified Polyurethane Foam [J].
Beccatelli, Matteo ;
Villani, Marco ;
Gentile, Francesco ;
Bruno, Luigi ;
Seletti, Davide ;
Nikolaidou, Domna Maria ;
Culiolo, Maurizio ;
Zappettini, Andrea ;
Coppede, Nicola .
ACS APPLIED POLYMER MATERIALS, 2021, 3 (03) :1563-1572
[6]   PEDOT:PSS Microchannel-Based Highly Sensitive Stretchable Strain Sensor [J].
Bhattacharjee, Mitradip ;
Soni, Mahesh ;
Escobedo, Pablo ;
Dahiya, Ravinder .
ADVANCED ELECTRONIC MATERIALS, 2020, 6 (08)
[7]  
Carroccio S, 1999, MACROMOL CHEM PHYSIC, V200, P2345, DOI 10.1002/(SICI)1521-3935(19991001)200:10<2345::AID-MACP2345>3.0.CO
[8]  
2-T
[9]   Sequential Solution Polymerization of Poly(3,4-ethylenedioxythiophene) Using V2O5 as Oxidant for Flexible Touch Sensors [J].
Chen, Rui ;
Sun, Kuan ;
Zhang, Qi ;
Zhou, Yongli ;
Li, Meng ;
Sun, Yuyang ;
Wu, Zhou ;
Wu, Yuyang ;
Li, Xinlu ;
Xi, Jialei ;
Ma, Chi ;
Zhang, Yiyang ;
Ouyang, Jianyong .
ISCIENCE, 2019, 12 :66-+
[10]   Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting [J].
Cheng, Huan ;
Du, Yirui ;
Wang, Bijia ;
Mao, Zhiping ;
Xu, Hong ;
Zhang, Linping ;
Zhong, Yi ;
Jiang, Wan ;
Wang, Lianjun ;
Sui, Xiaofeng .
CHEMICAL ENGINEERING JOURNAL, 2018, 338 :1-7