Nickel Oxide Nanoparticles/Ordered Mesoporous Carbon Nanocomposites as Anode Materials for Lithium-Ion Battery with Improved Electrochemical Performance

被引:9
|
作者
Li, Zhaoqiang [1 ]
Wang, Liang [1 ]
Ge, Xiaoli [1 ]
Ge, Hongwei [1 ]
Yin, Longwei [1 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Sch Mat Sci & Engn, Jinan 250061, Peoples R China
关键词
Nickel Oxide; Ordered Mesoporous Carbon; Anode; Lithium-Ion Battery; ELECTRODE MATERIAL; POROUS NIO; STORAGE; COMPOSITE; FABRICATION; CAPACITY; FILM;
D O I
10.1166/sam.2014.1983
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A controllable synthetic route was developed to synthesize nanocrystalline NiO nanoparticles incoporated in ordered mesoporous carbon (OMC), with an adjustable size, content and distribution of NiO nanoparticles, as anode materials for lithium ion batteries (LIBs) with improved electrochemical lithium storage performance. The effects of size, distribution and content of NiO nanoparticles on the electrochemical performances of the mesoporous NiO/OMC nanocomposites as anode materials for LIBs were investigated using galvanostatical charge-discharge and cyclic voltammetry techniques. An optimal 20% NiO content of the one-step route synthesized of 20NiO/OMC nanocomposite with NiO nanoparticles homogeneously embedded within OMC matrices, and with a smaller size of 10 nm of NiO nanoparticles, displays a highly improved rate capability and reversible capacity for LIBs, exhbiting a high specific capacity up to 762 mAh g(-1), and a high coulombic efficiency of up to 98.4% after 60 cycles at a current density of 100 mA g(-1). Even at a high current of 1600 mA g(-1), it still delivers a capacity of 272 mAh g(-1), about 5 times the capacity of pure OMC sample. Such significant improvement of electrochemical performance is ascribed to the unique structures of the NiO/OMC nanocomposites with a variety of favorable properties. The OMC matrix with a thin wall provides short solid-state diffusion length of Li, building electron passway between the dielectric NiO nanoparticles, hinder the agglomeration of NiO nanoparticles and buffer the volume change of NiO during discharge/charge processes. The addition of appropriate amount of NiO nanoparticles provides a proper surface area to appropriately reduce the number of active sites of OMC and increase the capacity retention. The synergetic effect between the conducting OMC matrix and NiO nanoparticles makes it a promising anode material for LIBs with high specific capacity, high rate capability, high coulombic efficiency.
引用
收藏
页码:2089 / 2097
页数:9
相关论文
共 50 条
  • [31] Mn3O4/carbon nanotubes nanocomposites as improved anode materials for lithium-ion batteries
    Gao, Doudou
    Luo, Sisi
    Zhang, Yuhong
    Liu, Jiyan
    Wu, Huiming
    Wang, Shiquan
    He, Peixin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (11) : 3409 - 3417
  • [32] Electrochemical Performance of Hollow Silicon/Carbon Anode Materials for Lithium Ion Battery
    Jung, Min Ji
    Lee, Jong Dae
    APPLIED CHEMISTRY FOR ENGINEERING, 2016, 27 (04): : 444 - 448
  • [33] Improved electrochemical performance of a three-dimensionally ordered mesoporous carbon based lithium ion battery using vinylene carbonate
    Kim, Jung-Joon
    Ahn, Chiyeong
    Bak, Woojeong
    Yoo, Won Cheol
    Sung, Yung-Eun
    MATERIALS TODAY COMMUNICATIONS, 2016, 6 : 69 - 73
  • [34] Construction of three-dimensional carbon framework-loaded silicon nanoparticles anchored by carbon film for high-performance lithium-ion battery anode materials
    Wu, Fan
    He, Zhichao
    Wang, Mingqiang
    Huang, Yudong
    Wang, Fei
    NANO RESEARCH, 2022, 15 (07) : 6168 - 6175
  • [35] Synthesis and Electrochemical Performance of Silica/Porous Lignin Carbon Composites as Anode Materials for Lithium-ion Batteries
    Li Changqing
    Yang Dongjie
    Xi Yuebin
    Qin Yanlin
    Qiu Xueqing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2018, 39 (12): : 2725 - 2733
  • [36] A composite material of SnO2/ordered mesoporous carbon for the application in Lithium-ion Battery
    Xu, Gui-Liang
    Chen, Shu-Ru
    Li, Jun-Tao
    Ke, Fu-Sheng
    Huang, Ling
    Sun, Shi-Gang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 656 (1-2) : 185 - 191
  • [37] Helical mesoporous carbon nanoribbons as high performance lithium ion battery anode materials
    Shao, Changzhen
    Zhang, Feng
    Li, Baozong
    Li, Yi
    Wu, Qi-Hui
    Yang, Yonggang
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 80 : 434 - 438
  • [38] One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries
    Park, Junsu
    Kim, Gil-Pyo
    Nam, Inho
    Park, Soomin
    Yi, Jongheop
    NANOTECHNOLOGY, 2013, 24 (02)
  • [39] Improved disordered carbon as high performance anode material for lithium ion battery
    Chang, Caixian
    Xiang, Jiangfeng
    Li, Ming
    Han, Xiaoyan
    Yuan, Liangjie
    Sun, Jutang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (03) : 427 - 431
  • [40] Variable temperature performance of intermetallic lithium-ion battery anode materials
    Jansen, Andrew N.
    Clevenger, Jessica A.
    Baebler, Anna M.
    Vaughey, John T.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (13) : 4457 - 4461