Clustering of volcanic ash arising from different fragmentation mechanisms using Kohonen self-organizing maps

被引:16
作者
Ersoy, Orkun [1 ]
Aydar, Erkan
Gourgaud, Alain
Artuner, Harun
Bayhan, Hasan
机构
[1] Hacettepe Univ, Dept Geol Engn, TR-06532 Ankara, Turkey
[2] Univ Blaise Pascal, CNRS, UMR 6524, F-63038 Clermont Ferrand, France
[3] Hacettepe Univ, Dept Comp Sci & Engn, TR-06532 Ankara, Turkey
关键词
neural networks; Kohonen self-organizing maps; volcanic ash; Nemrut;
D O I
10.1016/j.cageo.2006.10.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we present the visualization and clustering capabilities of self-organizing maps (SOM) for analyzing high dimensional data. We used SOM because they implement an orderly mapping of a high-dimensional distribution onto a regular low-dimensional grid. We used surface texture parameters of volcanic ash that arose from different fragmentation mechanisms as input data. We found that SOM cluster 13-dimensional data more accurately than conventional statistical classifiers. The component planes constructed by SOM are more successful than statistical tests in determining the distinctive parameters. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:821 / 828
页数:8
相关论文
共 38 条
[11]  
Haykin S., 1994, Neural networks: a comprehensive foundation
[12]  
HEIKEN G, 1972, GEOL SOC AM BULL, V83, P1961, DOI 10.1130/0016-7606(1972)83[1961:MAPOVA]2.0.CO
[13]  
2
[14]  
HEIKEN G, 1985, VOLCANIC ASH SMITHSO
[15]  
Heiken G., 1974, SMITHSONIAN CONTRIBU, V12, P1, DOI DOI 10.5479/SI.00810274.12.1
[16]  
Jain AK., 1988, Algorithms for clustering data
[17]  
Jardine N., 1971, MATH TAXONOMY
[18]  
Kartalopoulos S. V, 1995, UNDERSTANDING NEURAL
[19]  
KASKI S, 1997, MATH COMPUTING MANAG, V82
[20]   Application of a feed-forward artificial neural network as a mapping device [J].
Kocjancic, R ;
Zupan, J .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1997, 37 (06) :985-989