Observation of Distinct Two-Photon Transition Channels in CdTe Quantum Dots in a Regime of Very Strong Confinement

被引:3
作者
Vivas, Marcelo Goncalves [1 ,2 ]
Leandro De Sousa, Jose Carlos [3 ]
De Boni, Leonardo [2 ]
Schiavon, Marco Antonio [3 ]
Mendonca, Cleber Renato [2 ]
机构
[1] Univ Fed Alfenas, Inst Ciencia & Tecnol, BR-37715400 Pocos De Caldas, MG, Brazil
[2] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Fed Sao Joao del Rei, Dept Ciencias Nat, BR-36301160 Sao Joao Del Rei, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
CdTe quantum dots; 2PA transition channels; femtosecond two-photon spectroscopy; SYMMETRY-BREAKING; ABSORPTION; SIZE; NANOCRYSTALS;
D O I
10.3390/ma10040363
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report here on the direct observation of distinct two-photon transition channels in glutathione-capped (GSH) CdTe quantum dots (QDs) in a very strong confinement regime. CdTe-GSH QDs with different average diameters (2.5, 3.0, and 3.3 nm) were synthesized through the one-pot method and their two-photon absorption (2PA) spectrum determined by a femtosecond wavelength-tunable Z-scan. Our results show that the two lower-energy one-photon-allowed excitonic transitions, 1S(3/2)(h) -> 1S(e) and 2S(3/2)(h) -> 1S(e), are also accessed via 2PA. These results were ascribed to the relaxation of the parity selection rules due to the noncentrosymmetric structure of the CdTe QDs (zinc-blended structure), whose magnitude are determined by surface defects and structural irregularities present in CdTe-GSH QDs, in the strong confinement regime.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Transition metal ions doped InP/ZnS quantum dots: toward the application of two-photon probes and type-I photosensitizers [J].
Cui, Yanyan ;
Luo, Tai ;
Jin, Hao ;
He, Tingchao .
OPTICS EXPRESS, 2024, 32 (25) :44265-44271
[42]   Second harmonic generation and two-photon luminescence upconversion in glasses doped with ZnSe nanocrystalline quantum dots [J].
Thantu, N .
JOURNAL OF LUMINESCENCE, 2005, 111 (1-2) :17-24
[43]   Inertialess and resonance nonlinearity in colloidal CdSe/ZnS quantum dots in the case of two-photon excitation of excitons [J].
Laktaev, I. D. ;
Smirnov, A. M. .
NONLINEAR OPTICS AND ITS APPLICATIONS 2020, 2020, 11358
[44]   Coherent modulation of two-photon up-conversion from colloidal quantum dots by femtosecond laser [J].
Xu, Cheng ;
Yao, Yunhua ;
Pu, Chaodan ;
Zhang, Shian ;
Liu, Xiaofeng ;
Qiu, Jianrong .
RSC ADVANCES, 2015, 5 (99) :80998-81002
[45]   3D Photoluminescent Nanostructures Containing Quantum Dots Fabricated by Two-Photon Polymerization: Influence of Quantum Dots on the Spatial Resolution of Laser Writing [J].
Peng, Ying ;
Jradi, Safi ;
Yang, Xuyong ;
Dupont, Maxime ;
Hamie, Fatima ;
Xuan Quyen Dinh ;
Sun, Xiao Wei ;
Xu, Tao ;
Bachelot, Renaud .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (02)
[46]   Strong nonlinear optical phosphorescence from water-soluble polymer dots: Towards the application of two-photon bioimaging [J].
He, Tingchao ;
Hu, Wenbo ;
Shi, Huifang ;
Pan, Qunfeng ;
Ma, Guohong ;
Huang, Wei ;
Fan, Quli ;
Lin, Xiaodong .
DYES AND PIGMENTS, 2015, 123 :218-221
[47]   Degenerate four-wave mixing and two-photon induced gratings in colloidal quantum dots CdSe/ZnS [J].
Smirnov, A. M. ;
Kozlova, M. V. ;
Dneprovskii, V. S. .
NONLINEAR OPTICS AND APPLICATIONS IX, 2015, 9503
[48]   Two-photon absorption and emission in CsPb(Br/I)3 cesium lead halide perovskite quantum dots [J].
Li, Jingzhou ;
Zhang, Saifeng ;
Dong, Hongxing ;
Yuan, Xinqiang ;
Jiang, Xiongwei ;
Wang, Jun ;
Zhang, Long .
CRYSTENGCOMM, 2016, 18 (41) :7945-7949
[49]   Cell Imaging Using Two-Photon Excited CdS Fluorescent Quantum Dots Working within the Biological Window [J].
Zhang, Nannan ;
Liu, Xiao ;
Wei, Zhongchao ;
Liu, Haiying ;
Peng, Jie ;
Zhou, Liya ;
Li, Hongmei ;
Fan, Haihua .
NANOMATERIALS, 2019, 9 (03)
[50]   Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B [J].
Li, Muye ;
Li, Fang ;
He, Zhicong ;
Zhang, Junpei ;
Han, Junbo ;
Lu, Peixiang .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (23)