Bailey Pairs With Free Parameters, Mock Theta Functions and Tubular Partitions

被引:2
作者
Andrews, George E. [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Bailey pairs; mock theta functions; tubular partitions; ROGERS-RAMANUJAN IDENTITIES; COMBINATORY ANALYSIS; POLYNOMIALS;
D O I
10.1007/s00026-014-0245-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study began in an effort to find a simpler derivation of the Bailey pairs associated with the seventh order mock theta functions. It is shown that the introduction of a new parameter independent of both a and q leads to a much simpler treatment. It is noted that a previous treatment of the central fifth order mock theta function inadvertently uses this approach. The paper concludes by applying this method to find new surprising identities and new arithmetic objects, tubular partitions.
引用
收藏
页码:563 / 578
页数:16
相关论文
共 17 条
[1]  
Andrews G.E., 1979, Proc. Sympos. Pure Math, V34, P1
[2]  
Andrews G. E., 1986, CBMS REGIONAL C SERI, V66, pxii+130
[3]   THE 5TH AND 7TH ORDER MOCK THETA-FUNCTIONS [J].
ANDREWS, GE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 293 (01) :113-134
[4]   ALDER POLYNOMIALS AND A NEW GENERALIZATION OF ROGERS-RAMANUJAN IDENTITIES [J].
ANDREWS, GE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) :40-64
[5]   MULTIPLE SERIES ROGERS-RAMANUJAN TYPE IDENTITIES [J].
ANDREWS, GE .
PACIFIC JOURNAL OF MATHEMATICS, 1984, 114 (02) :267-283
[6]   q-Orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions [J].
Andrews, George E. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 276 (01) :21-32
[7]   Parity in partition identities [J].
Andrews, George E. .
RAMANUJAN JOURNAL, 2010, 23 (1-3) :45-90
[8]  
Bailey WN, 1947, P LOND MATH SOC, V49, P421
[9]  
Bailey W.N., 1948, Proc. Lond. Math. Soc., V50, P1, DOI DOI 10.1112/PLMS/S2-50.1.1
[10]  
GASPER G, 1990, ENCY MATH APPL, V35