Uniform ergodicities and perturbation bounds of Markov chains on ordered Banach spaces

被引:2
作者
Ozcan, Nazife Erkursun [1 ]
Mukhamedov, Farrukh [2 ]
机构
[1] Hacettepe Univ, Dept Math, Fac Sci, TR-06800 Ankara, Turkey
[2] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Abu Dhabi 15551, U Arab Emirates
来源
37TH INTERNATIONAL CONFERENCE ON QUANTUM PROBABILITY AND RELATED TOPICS (QP37) | 2017年 / 819卷
关键词
SEMIGROUPS; STABILITY;
D O I
10.1088/1742-6596/819/1/012015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider uniformly mean ergodic and uniformly asymptotical stable Markov operators on ordered Banach spaces. In terms of the ergodicity coefficient, we show the equivalence of uniform and weak mean ergodicities of Markov operators. This result allowed us to establish a category theorem for uniformly mean ergodic Markov operators. Furthermore, using properties of the ergodicity coefficient, we develop the perturbation theory for uniformly asymptotical stable Markov chains in the abstract scheme.
引用
收藏
页数:8
相关论文
共 39 条
  • [11] Two Approaches to the Construction of Perturbation Bounds for Continuous-Time Markov Chains
    Zeifman, Alexander
    Korolev, Victor
    Satin, Yacov
    MATHEMATICS, 2020, 8 (02)
  • [12] The Arsenal of Perturbation Bounds for Finite Continuous-Time Markov Chains: A Perspective
    Mitrophanov, Alexander Y.
    MATHEMATICS, 2024, 12 (11)
  • [13] Stability of positive linear switched systems on ordered Banach spaces
    Doan, T. S.
    Kalauch, A.
    Klose, M.
    Siegmund, S.
    SYSTEMS & CONTROL LETTERS, 2015, 75 : 14 - 19
  • [14] Perturbation analysis for continuous-time Markov chains
    Liu YuanYuan
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (12) : 2633 - 2642
  • [15] Perturbation theory for Markov chains via Wasserstein distance
    Rudolf, Daniel
    Schweizer, Nikolaus
    BERNOULLI, 2018, 24 (4A) : 2610 - 2639
  • [16] Stability criteria for positive semigroups on ordered Banach spaces
    Glueck, Jochen
    Mironchenko, Andrii
    JOURNAL OF EVOLUTION EQUATIONS, 2025, 25 (01)
  • [18] Uniform stability of periodic discrete systems in Banach spaces
    Buse, C
    Cerone, P
    Dragomir, SS
    Sofo, A
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (12) : 1081 - 1088
  • [19] Univalent Subordination Chains in Reflexive Complex Banach Spaces
    Graham, Ian
    Hamada, Hidetaka
    Kohr, Gabriela
    Kohr, Mirela
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS V, 2013, 591 : 83 - 111
  • [20] ON ERROR BOUNDS AND MULTIPLIER METHODS FOR VARIATIONAL PROBLEMS IN BANACH SPACES
    Kanzow, Christian
    Steck, Daniel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (03) : 1716 - 1738