Remaining useful life prediction of a piping system using artificial neural networks: A case study

被引:22
作者
Shaik, Nagoor Basha [1 ]
Pedapati, Srinivasa Rao [1 ]
Dzubir, Faizul Azly B. A. [2 ]
机构
[1] Univ Teknol Petronas, Mech Engn Dept, Bandar Seri Iskandar 32610, Perak, Malaysia
[2] Petroliam Nas Berhad, Project Delivery & Technol Div, Mech Dept, Grp Tech Solut, Kuala Lumpur 50050, Malaysia
关键词
Artificial neural networks; Corrosion; Deterioration; Piping; Prediction; RUL; FAILURE; OIL; MODELS;
D O I
10.1016/j.asej.2021.06.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Oil producers or operators such as Shell, Petronas, Petron, Chevron, and Lukoil have always placed their equipment as the highest priority for operations. Still, the study shows that many failures in the facility associated with piping systems lead to billions of dollars' loss. In the oil and gas industry, these piping systems are subjected to various failure mechanisms since it has been operated in various processes and harsh geographical environment. Most of the piping systems are susceptible to corrosion caused by several factors, as reported in the literature. Corrosions of the piping system weakened the piping strength as well as its fittings, thus reducing its ability to withstand the fluctuation of temperature and pressure generated towards the piping system. This work focussed on the factors that contribute to the life of the piping system based on the real-time risk inspection data that were obtained from PETRONAS facilities. The parameters considered were pressure, corrosion, wall thinning, age, nominal thickness, outer radius, and product type. The neural network model has been developed to predict the remaining useful life of piping based on the selected parameters. The proposed model showed promising results of R-2 value 0.99, which is close to 1.0, and the validation accuracy of a model was found 97.51% when compared with the actual data. The deterioration trends of individual factors considered in this study are generated to know the effect on pipe life conditions. This work may help oil and gas com-panies in determining the Fitness For service (FFS) of the piping system by estimating the life of the pip -ing system affected by various corrosion phenomena. (*C)& nbsp;2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University.& nbsp;
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Service Life Prediction of Masonry Arch Bridges Using Artificial Neural Networks
    Dissanayake, P. B. R.
    Narasinghe, S. B.
    ENGINEER-JOURNAL OF THE INSTITUTION OF ENGINEERS SRI LANKA, 2008, 41 (01): : 13 - 16
  • [42] Prediction of Discharge in a Tidal River Using Artificial Neural Networks
    Hidayat, H.
    Hoitink, A. J. F.
    Sassi, M. G.
    Torfs, P. J. J. F.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2014, 19 (08)
  • [43] Arctic Ice Thickness Prediction using Artificial Neural Networks
    Zaatar, Tarek
    Cheaitou, Ali
    Faury, Olivier
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 274 - 278
  • [44] Heart Disease Prediction Using Artificial Neural Networks: A Survey
    Peng, Chun-Chen
    Huang, Chun-Wei
    Lai, Yi-Chun
    PROCEEDINGS OF THE 2ND IEEE EURASIA CONFERENCE ON BIOMEDICAL ENGINEERING, HEALTHCARE AND SUSTAINABILITY 2020 (IEEE ECBIOS 2020): BIOMEDICAL ENGINEERING, HEALTHCARE AND SUSTAINABILITY, 2020, : 147 - 150
  • [45] Prediction of Remaining Useful Life for Aero-Engines
    Rounak, B.
    Manikandan, J.
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON AEROSPACE ELECTRONICS AND REMOTE SENSING TECHNOLOGY (ICARES 2021), 2021,
  • [46] A machine learning framework for remaining useful lifetime prediction of li-ion batteries using diverse neural networks
    Lee, Junghwan
    Sun, Huanli
    Liu, Yongshan
    Li, Xue
    ENERGY AND AI, 2024, 15
  • [47] A BiGRU method for remaining useful life prediction of machinery
    She, Daoming
    Jia, Minping
    MEASUREMENT, 2021, 167
  • [48] PREDICTION BENCHMARK OF ARTIFICIAL NEURAL NETWORKS
    Samek, David
    ANNALS OF DAAAM FOR 2009 & PROCEEDINGS OF THE 20TH INTERNATIONAL DAAAM SYMPOSIUM, 2009, 20 : 621 - 622
  • [49] Convolution neural network based particle filtering for remaining useful life prediction of rolling bearing
    Liu, Xiyang
    Chen, Guo
    Cheng, Zhenjie
    Wei, Xunkai
    Wang, Hao
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (06)
  • [50] PREDICTION OF PENETRATION RATE OF ROTARY-PERCUSSIVE DRILLING USING ARTIFICIAL NEURAL NETWORKS - A CASE STUDY
    Aalizad, Seyed Ali
    Rashidinejad, Farshad
    ARCHIVES OF MINING SCIENCES, 2012, 57 (03) : 715 - 728