Fractal analysis and fuzzy c-means clustering for quantification of fibrotic microscopy images

被引:4
|
作者
Tasoulis, S. K. [1 ]
Maglogiannis, I. [2 ]
Plagianakos, V. P. [1 ]
机构
[1] Univ Cent Greece, Dept Comp Sci & Biomed Informat, Lamia 35100, Greece
[2] Univ Piraeus, Dept Digital Syst, Piraeus 18532, Greece
关键词
Image analysis; Cluster analysis; Fuzzy clustering; Fractal dimension; CHRONIC HEPATITIS-C; IDIOPATHIC PULMONARY-FIBROSIS; LIVER FIBROSIS; DIMENSION ESTIMATION; SEMIQUANTITATIVE INDEXES; INTERSTITIAL FIBROSIS; CLASSIFICATION; SEGMENTATION; VASECTOMY;
D O I
10.1007/s10462-013-9408-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The advances in improved fluorescent probes and better cameras in collaboration with the advent of computers in imaging and image analysis, assist the task of diagnosis in microscopy imaging. Based on such technologies, we introduce a computer-assisted image characterization tool based on fractal analysis and fuzzy clustering for the quantification of degree of the Idiopathic Pulmonary Fibrosis in microscopy images. The implementation of this algorithmic strategy proved very promising concerning the issue of the automated assessment of microscopy images of lung fibrotic regions against conventional classification methods that require training such as neural networks. Fractal dimension is an important image feature that can be associated with pathological fibrotic structures as is shown by our experimental results.
引用
收藏
页码:313 / 329
页数:17
相关论文
共 50 条
  • [41] Clustering by Unified Principal Component Analysis and Fuzzy C-Means with Sparsity Constraint
    Wang, Jikui
    Shi, Quanfu
    Yang, Zhengguo
    Nie, Feiping
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT II, 2020, 12453 : 337 - 351
  • [42] Image segmentation of noisy digital images using extended Fuzzy C-Means clustering algorithm
    Kaur, Prabhjot
    Soni, A. K.
    Gosain, Anjana
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2013, 47 (2-3) : 198 - 205
  • [43] Clustering of Hyperspectral Images with an Ensemble Method Based on Fuzzy C-Means and Markov Random Fields
    Alhichri, Haikel
    Ammour, Nassim
    Alajlan, Naif
    Bazi, Yakoub
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (05) : 3747 - 3757
  • [44] A modified C-means clustering algorithm
    El-Mouadib, Faraj A.
    Zubi, Zakaria Suliman
    Talhi, Halima S.
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON DATA NETWORKS, COMMUNICATIONS, COMPUTERS (DNCOCO '09), 2009, : 85 - +
  • [45] Initialization of Membership Degree Matrix for Fast Convergence of Fuzzy C-Means Clustering
    Cebeci, Zeynel
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,
  • [46] Hyperspectral image clustering with Albedo recovery Fuzzy C-Means
    Azimpour, P.
    Shad, R.
    Ghaemi, M.
    Etemadfard, H.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (16) : 6117 - 6134
  • [47] POSSIBILISTIC FUZZY C-MEANS CLUSTERING ON MEDICAL DIAGNOSTIC SYSTEMS
    Simhachalam, B.
    Ganesan, G.
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 1125 - 1129
  • [48] Fuzzy C-means clustering algorithm based on incomplete data
    Jia, Zhiping
    Yu, Zhiqiang
    Zhang, Chenghui
    2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 600 - 604
  • [49] A New Criterion for Improving Convergence of Fuzzy C-Means Clustering
    Perez-Ortega, Joaquin
    Moreno-Calderon, Carlos Fernando
    Roblero-Aguilar, Sandra Silvia
    Almanza-Ortega, Nelva Nely
    Frausto-Solis, Juan
    Pazos-Rangel, Rodolfo
    Rodriguez-Lelis, Jose Maria
    AXIOMS, 2024, 13 (01)
  • [50] Generalized fuzzy c-means clustering in the presence of outlying data
    Hathaway, RJ
    Overstreet, DD
    Hu, YK
    Davenport, JW
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE II, 1999, 3722 : 509 - 517