Fractal analysis and fuzzy c-means clustering for quantification of fibrotic microscopy images

被引:4
|
作者
Tasoulis, S. K. [1 ]
Maglogiannis, I. [2 ]
Plagianakos, V. P. [1 ]
机构
[1] Univ Cent Greece, Dept Comp Sci & Biomed Informat, Lamia 35100, Greece
[2] Univ Piraeus, Dept Digital Syst, Piraeus 18532, Greece
关键词
Image analysis; Cluster analysis; Fuzzy clustering; Fractal dimension; CHRONIC HEPATITIS-C; IDIOPATHIC PULMONARY-FIBROSIS; LIVER FIBROSIS; DIMENSION ESTIMATION; SEMIQUANTITATIVE INDEXES; INTERSTITIAL FIBROSIS; CLASSIFICATION; SEGMENTATION; VASECTOMY;
D O I
10.1007/s10462-013-9408-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The advances in improved fluorescent probes and better cameras in collaboration with the advent of computers in imaging and image analysis, assist the task of diagnosis in microscopy imaging. Based on such technologies, we introduce a computer-assisted image characterization tool based on fractal analysis and fuzzy clustering for the quantification of degree of the Idiopathic Pulmonary Fibrosis in microscopy images. The implementation of this algorithmic strategy proved very promising concerning the issue of the automated assessment of microscopy images of lung fibrotic regions against conventional classification methods that require training such as neural networks. Fractal dimension is an important image feature that can be associated with pathological fibrotic structures as is shown by our experimental results.
引用
收藏
页码:313 / 329
页数:17
相关论文
共 50 条
  • [21] A robust clustering algorithm using spatial fuzzy C-means for brain MR images
    Alruwaili, Madallah
    Siddiqi, Muhammad Hameed
    Javed, Muhammad Arshad
    EGYPTIAN INFORMATICS JOURNAL, 2020, 21 (01) : 51 - 66
  • [22] Wavelet Frame-Based Fuzzy C-Means Clustering for Segmenting Images on Graphs
    Wang, Cong
    Pedrycz, Witold
    Yang, JianBin
    Zhou, MengChu
    Li, ZhiWu
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (09) : 3938 - 3949
  • [23] Edge detection in MRI brain tumor images based on fuzzy C-means clustering
    Zotin, Alexander
    Simonov, Konstantin
    Kurako, Mikhail
    Hamad, Yousif
    Kirillova, Svetlana
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 1261 - 1270
  • [24] Sparse learning based fuzzy c-means clustering
    Gu, Jing
    Jiao, Licheng
    Yang, Shuyuan
    Zhao, Jiaqi
    KNOWLEDGE-BASED SYSTEMS, 2017, 119 : 113 - 125
  • [25] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [26] Clustering Spatiotemporal Data: An Augmented Fuzzy C-Means
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (05) : 855 - 868
  • [27] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [28] Improvements to the relational fuzzy c-means clustering algorithm
    Khalilia, Mohammed A.
    Bezdek, James
    Popescu, Mihail
    Keller, James M.
    PATTERN RECOGNITION, 2014, 47 (12) : 3920 - 3930
  • [29] Median fuzzy c-means for clustering dissimilarity data
    Geweniger, Tina
    Zuelke, Dietlind
    Hammer, Barabara
    Villmann, Thomas
    NEUROCOMPUTING, 2010, 73 (7-9) : 1109 - 1116
  • [30] Online Classifiers Based on Fuzzy C-means Clustering
    Jedrzejowicz, Joanna
    Jedrzejowicz, Piotr
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2013, 8083 : 427 - 436