Degree of Approximation for Bivariate Chlodowsky-Szasz-Charlier Type Operators

被引:32
|
作者
Agrawal, Purshottam N. [1 ]
Ispir, Nurhayat [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Gazi Univ, Dept Math, Fac Sci, TR-06500 Ankara, Turkey
关键词
Chlodowsky-Szasz operators; Charlier polynomials; GBS operators; weighted modulus of continuity; BERNSTEIN-CHLODOVSKY POLYNOMIALS; THEOREM;
D O I
10.1007/s00025-015-0495-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a combination of Chlodowsky polynomials with generalized Szasz operators involving Charlier polynomials. We give the degree of approximation for these bivariate operators by means of the complete and partial modulus of continuity, and also by using weighted modulus of continuity. Furthermore, we construct a GBS (Generalized Boolean Sum) operator of bivariate Chlodowsky-Szasz-Charlier type and estimate the order of approximation in terms of mixed modulus of continuity.
引用
收藏
页码:369 / 385
页数:17
相关论文
共 50 条
  • [41] Blending type approximation by GBS operators of bivariate tensor product of λ-Bernstein-Kantorovich type
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [42] Approximation of Functions by Favard-Szasz-Mirakyan Operators of Max-Product Type in Weighted Spaces
    Holhos, Adrian
    FILOMAT, 2018, 32 (07) : 2567 - 2576
  • [43] Some Approximation Results by Bivariate Bernstein-Kantorovich Type Operators on a Triangular Domain
    Aslan, Resat
    Izgi, Aydin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (03): : 467 - 484
  • [44] Approximation by bivariate generalized Bernstein–Schurer operators and associated GBS operators
    S. A. Mohiuddine
    Advances in Difference Equations, 2020
  • [45] Szász Type Operators Involving Charlier Polynomials of Blending Type
    Ruchi Chauhan
    Behar Baxhaku
    Purshottam N. Agrawal
    Complex Analysis and Operator Theory, 2019, 13 : 1197 - 1226
  • [46] Approximation properties of Szasz-Mirakyan operators preserving exponential functions
    Aral, Ali
    Inoan, Daniela
    Rasa, Ioan
    POSITIVITY, 2019, 23 (01) : 233 - 246
  • [47] APPROXIMATION OF GENERALIZED SZASZ-MIRAKJAN OPERATORS DEPENDING ON CERTAIN PARAMETERS
    Qasim, M.
    Mursaleen, M.
    Khan, A.
    Abbas, Z.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 139 - 155
  • [48] Approximation of Muntz-Szasz type in weighted spaces
    Sedletskii, A. M.
    SBORNIK MATHEMATICS, 2013, 204 (07) : 1028 - 1055
  • [49] Charlier–Szász–Durrmeyer type positive linear operators
    Deo N.
    Dhamija M.
    Afrika Matematika, 2018, 29 (1-2) : 223 - 232
  • [50] APPROXIMATION BY k-TH ORDER MODIFICATIONS OF SZASZ-MIRAKYAN OPERATORS
    Acar, Tuncer
    Aral, Ali
    Rasa, Ioan
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2016, 53 (03) : 379 - 398