Degree of Approximation for Bivariate Chlodowsky-Szasz-Charlier Type Operators

被引:32
|
作者
Agrawal, Purshottam N. [1 ]
Ispir, Nurhayat [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Gazi Univ, Dept Math, Fac Sci, TR-06500 Ankara, Turkey
关键词
Chlodowsky-Szasz operators; Charlier polynomials; GBS operators; weighted modulus of continuity; BERNSTEIN-CHLODOVSKY POLYNOMIALS; THEOREM;
D O I
10.1007/s00025-015-0495-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a combination of Chlodowsky polynomials with generalized Szasz operators involving Charlier polynomials. We give the degree of approximation for these bivariate operators by means of the complete and partial modulus of continuity, and also by using weighted modulus of continuity. Furthermore, we construct a GBS (Generalized Boolean Sum) operator of bivariate Chlodowsky-Szasz-Charlier type and estimate the order of approximation in terms of mixed modulus of continuity.
引用
收藏
页码:369 / 385
页数:17
相关论文
共 50 条
  • [31] Approximation of functions by bivariate q-Stancu-Durrmeyer type operators
    Neer, Trapti
    Acu, Ana Maria
    Agrawal, Purshottam
    MATHEMATICAL COMMUNICATIONS, 2018, 23 (02) : 161 - 180
  • [32] Modified Szasz Operators Involving Charlier Polynomials Based on Two Parameters
    Rao, Nadeem
    Wafi, Abdul
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (01): : 131 - 144
  • [33] Approximation by modified Kantorovich–Szász type operators involving Charlier polynomials
    K. J. Ansari
    M. Mursaleen
    M. Shareef KP
    M. Ghouse
    Advances in Difference Equations, 2020
  • [34] Approximation by a Generalized Szasz-Bezier Operators
    Qi, Qiulan
    Guo, Dandan
    FILOMAT, 2022, 36 (02) : 669 - 682
  • [35] Approximation by modified Szasz-Durrmeyer operators
    Acar, Tuncer
    Ulusoy, Gulsum
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (01) : 64 - 75
  • [36] On approximation of Bernstein-Chlodowsky-Gadjiev type operators that fix e-2x
    Okumus, Feyza Tanberk
    Akyigit, Mahmut
    Ansari, Khursheed J.
    Usta, Fuat
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [37] On the Approximation Properties of q-Analogue Bivariate λ-Bernstein Type Operators
    Aliaga, Edmond
    Baxhaku, Behar
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [38] Approximation by Szasz-Baskakov Operators Based on Boas-Buck-Type Polynomials
    Sofyalioglu, Melek
    Kanat, Kadir
    FILOMAT, 2022, 36 (11) : 3655 - 3673
  • [39] Approximation by bivariate generalized Bernstein-Schurer operators and associated GBS operators
    Mohiuddine, S. A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [40] Generalized Szasz-Mirakjan type operators via q-calculus and approximation properties
    Ahasan, Mohd
    Mursaleen, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 371