Degree of Approximation for Bivariate Chlodowsky-Szasz-Charlier Type Operators

被引:34
作者
Agrawal, Purshottam N. [1 ]
Ispir, Nurhayat [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Gazi Univ, Dept Math, Fac Sci, TR-06500 Ankara, Turkey
关键词
Chlodowsky-Szasz operators; Charlier polynomials; GBS operators; weighted modulus of continuity; BERNSTEIN-CHLODOVSKY POLYNOMIALS; THEOREM;
D O I
10.1007/s00025-015-0495-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a combination of Chlodowsky polynomials with generalized Szasz operators involving Charlier polynomials. We give the degree of approximation for these bivariate operators by means of the complete and partial modulus of continuity, and also by using weighted modulus of continuity. Furthermore, we construct a GBS (Generalized Boolean Sum) operator of bivariate Chlodowsky-Szasz-Charlier type and estimate the order of approximation in terms of mixed modulus of continuity.
引用
收藏
页码:369 / 385
页数:17
相关论文
共 33 条
[1]  
Abdullayeva AE, 2013, PROC INST MATH MECH, V38, P3
[2]  
Anastassiou G.A., 2000, Approximation Theory
[3]  
[Anonymous], 2005, Classical and Quantum Orthogonal Polynomials in One Variable
[4]   A TEST FUNCTION THEOREM AND APPROXIMATION BY PSEUDOPOLYNOMIALS [J].
BADEA, C ;
BADEA, I ;
GONSKA, HH .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (01) :53-64
[5]  
Badea C., 1990, C MATH SOC J BOLYAI, P51
[6]  
BADEA I., 1973, STUD U BABES BOLYAI, V18, P69
[7]  
Barbosu D., 2003, AN U CRAIOVA MI, V30, P34
[8]  
BARBOSU D, 2002, B STIINT U BAIA MA B, V18, P1
[9]  
Barsan I., 2011, Creat. Math. Inform, V20, P20
[10]  
Bögel K, 1935, J REINE ANGEW MATH, V173, P5