Optical Constant and Conformality Analysis of SiO2 Thin Films Deposited on Linear Array Microstructure Substrate by PECVD

被引:12
作者
Pan, Yongqiang [1 ]
Liu, Huan [1 ]
Wang, Zhuoman [1 ]
Jia, Jinmei [1 ]
Zhao, Jijie [1 ]
机构
[1] Xian Technol Univ, Sch Optoelect Engn, Xian 710021, Peoples R China
关键词
conformality; plasma-enhanced chemical vapor deposition (PECVD); silicon dioxide (SiO2); optical thin films; CHEMICAL-VAPOR-DEPOSITION; ATOMIC LAYER DEPOSITION; STEP COVERAGE; LOW-TEMPERATURE; SIO2-FILMS; BARRIER; TECHNOLOGY; ALD; CVD;
D O I
10.3390/coatings11050510
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
SiO2 thin films are deposited by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) technique using SiH4 and N2O as precursor gases. The stoichiometry of SiO2 thin films is determined by the X-ray photoelectron spectroscopy (XPS), and the optical constant n and k are obtained by using variable angle spectroscopic ellipsometer (VASE) in the spectral range 380-1600 nm. The refractive index and extinction coefficient of the deposited SiO2 thin films at 500 nm are 1.464 and 0.0069, respectively. The deposition rate of SiO2 thin films is controlled by changing the reaction pressure. The effects of deposition rate, film thickness, and microstructure size on the conformality of SiO2 thin films are studied. The conformality of SiO2 thin films increases from 0.68 to 0.91, with the increase of deposition rate of the SiO2 thin film from 20.84 to 41.92 nm/min. The conformality of SiO2 thin films decreases with the increase of film thickness, and the higher the step height, the smaller the conformality of SiO2 thin films.
引用
收藏
页数:8
相关论文
共 28 条
[1]   Low temperature nanoimprint lithography using silicon nitride molds [J].
Alkaisi, MM ;
Blaikie, RJ ;
McNab, SJ .
MICROELECTRONIC ENGINEERING, 2001, 57-8 :367-373
[2]   Deposition of SiO2 films with high laser damage thresholds by ion-assisted electron-beam evaporation [J].
Alvisi, M ;
De Nunzio, G ;
Di Giulio, M ;
Ferrara, MC ;
Perrone, MR ;
Protopapa, L ;
Vasanelli, L .
APPLIED OPTICS, 1999, 38 (07) :1237-1243
[3]   Thin Polymer Films with High Step Coverage in Microtrenches by Initiated CVD [J].
Baxamusa, Salmaan H. ;
Gleason, Karen K. .
CHEMICAL VAPOR DEPOSITION, 2008, 14 (9-10) :313-318
[4]   Characterization of step coverage change in ultraviolet-transparent plasma enhanced chemical vapor deposition silicon nitride films [J].
Bierner, J ;
Jacob, M ;
Schönherr, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2000, 18 (06) :2843-2846
[5]   STEP COVERAGE SIMULATION AND MEASUREMENT IN A DC PLANAR MAGNETRON SPUTTERING SYSTEM [J].
BLECH, IA ;
VANDERPLAS, HA .
JOURNAL OF APPLIED PHYSICS, 1983, 54 (06) :3489-3496
[6]   Two deterministic approaches to topography evolution [J].
Cale, Timothy S. ;
Bloomfield, Max O. ;
Gobbert, Matthias K. .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (22-23) :8873-8877
[7]   Studies on optical, chemical, and electrical properties of rapid SiO2 atomic layer deposition using tris(tert-butoxy)silanol and trimethyl-aluminum [J].
Choi, Dongwon ;
Kim, Boo-Kyung ;
Chung, Kwun-Bum ;
Park, Jin-Seong .
MATERIALS RESEARCH BULLETIN, 2012, 47 (10) :3004-3007
[8]   Effects of precursors and substrate materials on microstructure, dielectric properties, and step coverage of (Ba, Sr)TiO3 films grown by metalorganic chemical vapor deposition [J].
Gao, Y ;
He, S ;
Alluri, P ;
Engelhard, M ;
Lea, AS ;
Finder, J ;
Melnick, B ;
Hance, RL .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (01) :124-132
[9]   POROUS SIO2-FILMS ANALYZED BY TRANSMISSION ELECTRON-MICROSCOPY [J].
GIGNAC, LM ;
PARRILL, TM ;
CHANDRASHEKHAR, GV .
THIN SOLID FILMS, 1995, 261 (1-2) :59-63
[10]  
Jeong CH, 2005, JPN J APPL PHYS 1, V44, P1022, DOI 10.1143/JJAP.44.10221