FULLY COMPUTABLE ERROR BOUNDS FOR DISCONTINUOUS GALERKIN FINITE ELEMENT APPROXIMATIONS ON MESHES WITH AN ARBITRARY NUMBER OF LEVELS OF HANGING NODES

被引:26
作者
Ainsworth, Mark [1 ]
Rankin, Richard [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
a posteriori error estimation; discontinuous Galerkin method; computable error bounds; ELLIPTIC PROBLEMS; EQUATIONS;
D O I
10.1137/080725945
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain fully computable a posteriori error bounds on the broken energy seminorm and discontinuous Galerkin norm (DG-norm) of the error in first order symmetric interior penalty Galerkin (SIPG), nonsymmetric interior penalty Galerkin (NIPG), and incomplete interior penalty Galerkin (IIPG) finite element approximations of a linear second order elliptic problem on meshes containing an arbitrary number of levels of hanging nodes and comprised of triangular elements. The estimators are completely free of unknown constants and provide guaranteed numerical bounds on the broken energy seminorm and DG-norm of the error. These estimators are also shown to provide a lower bound for the broken energy seminorm and DG-norm of the error up to a constant and higher order data oscillation terms. We also obtain an explicit computable bound for the value of the interior penalty parameter needed to ensure the existence of the discontinuous Galerkin finite element approximation for all versions of the method.
引用
收藏
页码:4112 / 4141
页数:30
相关论文
共 21 条
[1]   Robust a posteriori error estimation for nonconforming finite element approximation [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2320-2341
[2]  
Ainsworth M., 2000, PURE APPL MATH NEW Y
[3]   A posteriori error estimation for discontinuous Galerkin finite element approximation [J].
Ainsworth, Mark .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1777-1798
[4]  
[Anonymous], RAIRO MODEL MATH ANA
[5]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[6]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[7]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[8]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[9]   Energy norm a posteriori error estimation for discontinuous Galerkin methods [J].
Becker, R ;
Hansbo, P ;
Larson, MG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) :723-733
[10]   An A posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems [J].
Bustinza, R ;
Gatica, GN ;
Cockburn, B .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :147-185