Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice

被引:269
作者
Zeilhofer, HU
Studler, B
Arabadzisz, D
Schweizer, C
Ahmadi, S
Layh, B
Bösl, MR
Fritschy, JM
机构
[1] Univ Zurich, Inst Pharmacol & Toxicol, CH-8507 Zurich, Switzerland
[2] Univ Erlangen Nurnberg, Dept Expt & Clin Pharmacol & Toxicol, D-91054 Erlangen, Germany
[3] Max Planck Inst Neurobiol, Dept Mol Neurobiol, Martinsried, Germany
关键词
glycine; glycine transporter; GlyT2; enhanced green fluorescent protein; EGFP; bacterial artificial chromosome (BAC); targeted recording; transgene;
D O I
10.1002/cne.20349
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Although glycine is a major inhibitory transmitter in the mammalian CNS, the role of glycinergic neurons in defined neuronal circuits remains ill defined. This is due in part to difficulties in identifying these cells in living slice preparations for electrophysiological recordings and visualizing their axonal projections. To facilitate the morphological and functional analysis of glycinergic neurons, we generated bacterial artificial chromosome (BAC) transgenic mice, which specifically express enhanced green fluorescent protein (EGFP) under the control of the promotor of the glycine transporter (GlyT) 2 gene, which is a reliable marker for glycinergic neurons. Neurons expressing GlyT2-EGFP were intensely fluorescent, and their dendirites and axons could be visualized in great detail. Numerous positive neurons were detected in the spinal cord, brainstem, and cerebellum. The hypothalamus, intralaminar nuclei of the thalamus, and basal forebrain also received a dense GlyT2-EGFP innervation, whereas in the olfactory bulb, striatum, neocortex, hippocampus, and amygdala positive fibers were much less abundant. No GlyT2-EGFP-positive cell bodies were seen in the forebrain. On the subcellular level, GlyT2EGFP fluorescence was colocalized extensively with glycine immunoreactivity in somata and dendrites and with both glycine and GlyT2 immunoreactivity in axon terminals, as shown by triple staining at all levels of the neuraxis, confirming the selective expression of the transgene in glycinergic neurons. In slice preparations of the spinal cord, no difference between the functional properties of EGFP-positive and negative neurons could be detected, confirming the utility of visually identifying glycinergic neurons to investigate their functional role in electrophysiological studies. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:123 / 141
页数:19
相关论文
共 33 条
[1]   GENE STRUCTURE AND GLIAL EXPRESSION OF THE GLYCINE TRANSPORTER GLYT1 IN EMBRYONIC AND ADULT RODENTS [J].
ADAMS, RH ;
SATO, K ;
SHIMADA, S ;
TOHYAMA, M ;
PUSCHEL, AW ;
BETZ, H .
JOURNAL OF NEUROSCIENCE, 1995, 15 (03) :2524-2532
[2]   PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons [J].
Ahmadi, S ;
Lippross, S ;
Neuhuber, WL ;
Zeilhofer, HU .
NATURE NEUROSCIENCE, 2002, 5 (01) :34-40
[3]   Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla [J].
Antal, M ;
Petko, M ;
Polgar, E ;
Heizmann, CW ;
StormMathisen, J .
NEUROSCIENCE, 1996, 73 (02) :509-518
[4]   LOCALIZATION OF GLYCINE RECEPTORS IN THE RAT CENTRAL NERVOUS-SYSTEM - AN IMMUNOCYTOCHEMICAL ANALYSIS USING MONOCLONAL-ANTIBODY [J].
ARAKI, T ;
YAMANO, M ;
MURAKAMI, T ;
WANAKA, A ;
BETZ, H ;
TOHYAMA, M .
NEUROSCIENCE, 1988, 25 (02) :613-624
[5]   2 GLYCINE TRANSPORTER VARIANTS WITH DISTINCT LOCALIZATION IN THE CNS AND PERIPHERAL-TISSUES ARE ENCODED BY A COMMON GENE [J].
BOROWSKY, B ;
MEZEY, E ;
HOFFMAN, BJ .
NEURON, 1993, 10 (05) :851-863
[6]  
Freund TF, 1996, HIPPOCAMPUS, V6, P347, DOI 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO
[7]  
2-I
[8]   Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality [J].
Gomeza, J ;
Ohno, K ;
Hülsmann, S ;
Armsen, W ;
Eulenburg, V ;
Richter, DW ;
Laube, B ;
Betz, H .
NEURON, 2003, 40 (04) :797-806
[9]   A gene expression atlas of the central nervous system based on bacterial artificial chromosomes [J].
Gong, SC ;
Zheng, C ;
Doughty, ML ;
Losos, K ;
Didkovsky, N ;
Schambra, UB ;
Nowak, NJ ;
Joyner, A ;
Leblanc, G ;
Hatten, ME ;
Heintz, N .
NATURE, 2003, 425 (6961) :917-925
[10]   GlyR α3:: An essential target for spinal PGE2-mediated inflammatory pain sensitization [J].
Harvey, RJ ;
Depner, UB ;
Wässle, H ;
Ahmadi, S ;
Heindl, C ;
Reinold, H ;
Smart, TG ;
Harvey, K ;
Schütz, B ;
Abo-Salem, OM ;
Zimmer, A ;
Poisbeau, P ;
Welzl, H ;
Wolfer, DP ;
Betz, H ;
Zeilhofer, HU ;
Müller, U .
SCIENCE, 2004, 304 (5672) :884-887