Nanoparticles made from novel starch derivatives for transdermal drug delivery

被引:188
作者
Santander-Ortega, M. J. [1 ,2 ]
Stauner, T. [3 ]
Loretz, B. [1 ]
Ortega-Vinuesa, J. L. [2 ]
Bastos-Gonzalez, D. [2 ]
Wenz, G. [3 ]
Schaefer, U. F. [1 ]
Lehr, C. M. [1 ]
机构
[1] Univ Saarland, Dept Biopharmaceut & Pharmaceut Technol, D-6600 Saarbrucken, Germany
[2] Univ Granada, Dept Appl Phys, Granada, Spain
[3] Univ Saarland, Dept Organ Macromol Chem, D-6600 Saarbrucken, Germany
关键词
Starch; Nanoparticles; Physico-chemical Characterization; Drug delivery; Skin; BIODEGRADABLE NANOPARTICLES; COLLOIDAL STABILITY; PHYSICAL-PROPERTIES; IN-VITRO; SKIN; MICROSPHERES; PARTICLES; PROTEINS; CARRIERS; PLGA;
D O I
10.1016/j.jconrel.2009.08.012
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The goal of this paper was aimed to the formulation of nanoparticles by using two different propyl-starch derivatives - referred to as PS-1 and PS-1.45 - with high degrees of substitution: 1.05 and 1.45 respectively. A simple o/w emulsion diffusion technique, avoiding the use of hazardous solvents such as dichloromethane or dimethyl sulfoxide, was chosen to formulate nanoparticles with both polymers, producing the PS-1 and PS-1.45 nanoparticles. Once the nanoparticles were prepared, a deep physicochemical characterization was carried out, including the evaluation of nanoparticles stability and applicability for lyophilization. Depending on this information, rules on the formation of PS-1 and PS-1.45 nanoparticles could be developed. Encapsulation and release properties of these nanoparticles were studied, showing high encapsulation efficiency for three tested drugs (flufenamic acid, testosterone and caffeine); in addition a close to linear release profile was observed for hydrophobic drugs with a null initial burst effect. Finally, the potential use of these nanoparticles as transdermal drug delivery systems was also tested, displaying a clear enhancer effect for flufenamic acid. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 46 条
[1]   Freeze-drying of nanoparticles: Formulation, process and storage considerations [J].
Abdelwahed, Wassim ;
Degobert, Ghania ;
Stainmesse, Serge ;
Fessi, Hatem .
ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (15) :1688-1713
[2]   Enhancement of topical delivery from biodegradable nanoparticles [J].
Alvarez-Román, R ;
Naik, A ;
Kalia, YN ;
Guy, RH ;
Fessi, H .
PHARMACEUTICAL RESEARCH, 2004, 21 (10) :1818-1825
[3]   Skin penetration and distribution of polymeric nanoparticles [J].
Alvarez-Román, R ;
Naik, A ;
Kalia, Y ;
Guy, RH ;
Fessi, H .
JOURNAL OF CONTROLLED RELEASE, 2004, 99 (01) :53-62
[4]   Enzymatic degradation of starch-based thermoplastic compounds used in protheses:: identification of the degradation products in solution [J].
Araújo, MA ;
Cunha, AM ;
Mota, M .
BIOMATERIALS, 2004, 25 (13) :2687-2693
[5]   Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems [J].
Arifin, Davis Yohanes ;
Lee, Lai Yeng ;
Wang, Chi-Hwa .
ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (12-13) :1274-1325
[6]   Chitosan and chitosan ethylene oxide propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines [J].
Calvo, P ;
RemunanLopez, C ;
VilaJato, JL ;
Alonso, MJ .
PHARMACEUTICAL RESEARCH, 1997, 14 (10) :1431-1436
[7]   Lipid vesicles and other colloids as drug carriers on the skin [J].
Cevc, G .
ADVANCED DRUG DELIVERY REVIEWS, 2004, 56 (05) :675-711
[8]   Stability and freeze-drying of cyclosporine loaded poly(D,L lactide-glycolide) carriers [J].
Chacón, M ;
Molpeceres, J ;
Berges, L ;
Guzmán, M ;
Aberturas, MR .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 1999, 8 (02) :99-107
[9]   ANHYDROBIOSIS [J].
CROWE, JH ;
HOEKSTRA, FA ;
CROWE, LM .
ANNUAL REVIEW OF PHYSIOLOGY, 1992, 54 :579-599
[10]   Is trehalose special for preserving dry biomaterials? [J].
Crowe, LM ;
Reid, DS ;
Crowe, JH .
BIOPHYSICAL JOURNAL, 1996, 71 (04) :2087-2093