ASYMPTOTIC ENUMERATION;
RANDOM MATRICES;
INVERTIBILITY;
NUMBER;
GRAPHS;
D O I:
10.1093/imrn/rnab247
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let A be the adjacency matrix of a uniformly random d-regular digraph on n vertices, and suppose that min(d, n - d) >= lambda n. We show that for any kappa >= 0, P[s(n) (A) <= kappa] <= C-lambda kappa root n + 2e(-c lambda n). Up to the constants C-lambda,c(lambda) > 0, our bound matches optimal bounds for n x n random matrices, each of whose entries is an i.i.d Ber(d/n) random variable. The special case k = 0 of our result confirms a conjecture of Cook regarding the probability of singularity of dense random regular digraphs.
机构:
Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R ChinaHebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
Guo, Zhengyu
Jia, Dongdong
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Univ Sci & Technol, Sch Sci, Shijiazhuang 050018, Hebei, Peoples R ChinaHebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
Jia, Dongdong
Zhang, Gengsheng
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
Hebei Key Lab Computat Math & Applicat, Shijiazhuang 050024, Hebei, Peoples R ChinaHebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China