共 50 条
The Smallest Singular Value of Dense Random Regular Digraphs
被引:1
|作者:
Jain, Vishesh
[1
]
Sah, Ashwin
[2
]
Sawhney, Mehtaab
[2
]
机构:
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词:
ASYMPTOTIC ENUMERATION;
RANDOM MATRICES;
INVERTIBILITY;
NUMBER;
GRAPHS;
D O I:
10.1093/imrn/rnab247
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let A be the adjacency matrix of a uniformly random d-regular digraph on n vertices, and suppose that min(d, n - d) >= lambda n. We show that for any kappa >= 0, P[s(n) (A) <= kappa] <= C-lambda kappa root n + 2e(-c lambda n). Up to the constants C-lambda,c(lambda) > 0, our bound matches optimal bounds for n x n random matrices, each of whose entries is an i.i.d Ber(d/n) random variable. The special case k = 0 of our result confirms a conjecture of Cook regarding the probability of singularity of dense random regular digraphs.
引用
收藏
页码:19300 / 19334
页数:35
相关论文