Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble

被引:93
作者
Okumura, Masako [1 ]
Natsume, Toyoaki [2 ,3 ]
Kanemaki, Masato T. [2 ,3 ]
Kiyomitsu, Tomomi [1 ,4 ]
机构
[1] Nagoya Univ, Grad Sch Sci, Div Biol Sci, Nagoya, Aichi, Japan
[2] Natl Inst Genet, Res Org Informat & Syst, Div Mol Cell Engn, Shizuoka, Japan
[3] SOKENDAI, Dept Genet, Shizuoka, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol PRESTO Progr, Saitama, Japan
来源
ELIFE | 2018年 / 7卷
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
ASYMMETRIC CELL-DIVISION; MITOTIC SPINDLE; MICROTUBULE-BINDING; CYTOPLASMIC DYNEIN; COMPLEX; POSITION; MECHANISM; KINETOCHORES; CHROMOSOME; PROTEIN;
D O I
10.7554/eLife.36559
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To position the mitotic spindle within the cell, dynamic plus ends of astral microtubules are pulled by membrane-associated cortical force-generating machinery. However, in contrast to the chromosome-bound kinetochore structure, how the diffusion-prone cortical machinery is organized to generate large spindle-pulling forces remains poorly understood. Here, we develop a light-induced reconstitution system in human cells. We find that induced cortical targeting of NuMA, but not dynein, is sufficient for spindle pulling. This spindle-pulling activity requires dynein-dynactin recruitment by NuMA's N-terminal long arm, dynein-based astral microtubule gliding, and NuMA's direct microtubule-binding activities. Importantly, we demonstrate that cortical NuMA assembles specialized focal structures that cluster multiple force-generating modules to generate cooperative spindle-pulling forces. This clustering activity of NuMA is required for spindle positioning, but not for spindle-pole focusing. We propose that cortical Dynein-Dynactin-NuMA (DDN) clusters act as the core force-generating machinery that organizes a multi-arm ensemble reminiscent of the kinetochore.
引用
收藏
页数:24
相关论文
共 58 条
  • [1] Regulation of mitotic spindle assembly factor NuMA by Importin-β
    Chang, Chih-Chia
    Huang, Tzu-Lun
    Shimamoto, Yuta
    Tsai, Su-Yi
    Hsia, Kuo-Chiang
    [J]. JOURNAL OF CELL BIOLOGY, 2017, 216 (11) : 3453 - 3462
  • [2] The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells
    Che, Daphne L.
    Duan, Liting
    Zhang, Kai
    Cui, Bianxiao
    [J]. ACS SYNTHETIC BIOLOGY, 2015, 4 (10): : 1124 - 1135
  • [3] The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
    Cheeseman, Iain M.
    Chappie, Joshua S.
    Wilson-Kubalek, Elizabeth M.
    Desai, Arshad
    [J]. CELL, 2006, 127 (05) : 983 - 997
  • [4] The Kinetochore
    Cheeseman, Iain M.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2014, 6 (07):
  • [5] COMPTON DA, 1995, J CELL SCI, V108, P621
  • [6] Regulation of mitotic spindle orientation: an integrated view
    di Pietro, Florencia
    Echard, Arnaud
    Morin, Xavier
    [J]. EMBO REPORTS, 2016, 17 (08) : 1106 - 1130
  • [7] Structure of the MIND Complex Defines a Regulatory Focus for Yeast Kinetochore Assembly
    Dimitrova, Yoana N.
    Jenni, Simon
    Valverde, Roberto
    Khin, Yadana
    Harrison, Stephen C.
    [J]. CELL, 2016, 167 (04) : 1014 - +
  • [8] LGN blocks the ability of NuMA to bind and stabilize microtubules: A mechanism for mitotic spindle assembly regulation
    Du, QS
    Taylor, L
    Compton, DA
    Macara, IG
    [J]. CURRENT BIOLOGY, 2002, 12 (22) : 1928 - 1933
  • [9] Fielmich L-E, 2018, BIORXIV, DOI [10.1101/319772, DOI 10.1101/319772]
  • [10] Small-molecule inhibitors of the AAA plus ATPase motor cytoplasmic dynein
    Firestone, Ari J.
    Weinger, Joshua S.
    Maldonado, Maria
    Barlan, Kari
    Langston, Lance D.
    O'Donnell, Michael
    Gelfand, Vladimir I.
    Kapoor, Tarun M.
    Chen, James K.
    [J]. NATURE, 2012, 484 (7392) : 125 - 129