Chaotic asymptotic behaviour of the solutions of the Lighthill-Whitham-Richards equation

被引:8
作者
Alberto Conejero, J. [1 ]
Martinez-Gimenez, Felix [1 ]
Peris, Alfredo [1 ]
Rodenas, Francisco [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, E-46022 Valencia, Spain
关键词
Devaney chaos; Mixing measures; Traffic; Lighthill-Whitman-Richards equation; C-0-semigroup; STRONG MIXING MEASURES; DISTRIBUTIONAL CHAOS; NONLINEAR DYNAMICS; SEMIGROUPS; MODELS; OPERATORS; WAVES;
D O I
10.1007/s11071-015-2245-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The phenomenon of chaos has been exhibited in mathematical nonlinear models that describe traffic flows, see, for instance (Li and Gao in Modern Phys Lett B 18(26-27):1395-1402, 2004; Li in Phys. D Nonlinear Phenom 207(1-2):41-51, 2005). At microscopic level, Devaney chaos and distributional chaos have been exhibited for some car-following models, such as the quick-thinking-driver model and the forward and backward control model (Barrachina et al. in 2015; Conejero et al. in Semigroup Forum, 2015). We present here the existence of chaos for the macroscopic model given by the Lighthill-Whitham-Richards equation.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 35 条
[1]   DISTRIBUTIONAL CHAOS FOR STRONGLY CONTINUOUS SEMIGROUPS OF OPERATORS [J].
Albanese, Angela A. ;
Barrachina, Xavier ;
Mangino, Elisabetta M. ;
Peris, Alfredo .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) :2069-2082
[2]   Linear chaos for the Quick-Thinking-Driver model [J].
Alberto Conejero, J. ;
Murillo-Arcila, Marina ;
Seoane-Sepulveda, Juan B. .
SEMIGROUP FORUM, 2016, 92 (02) :486-493
[3]  
[Anonymous], 2000, GRAD TEXT M
[4]  
[Anonymous], 1999, Transportation Research Part F: Traffic Psychology and Behaviour, DOI DOI 10.1016/S1369-8478(00)00005-X
[5]   Chaotic behaviour of birth-and-death models with proliferation [J].
Aroza, Javier ;
Peris, Alfred .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) :647-655
[6]   A generalization of Desch-Schappacher-Webb criteria for chaos [J].
Banasiak, J ;
Moszynski, M .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (05) :959-972
[7]   Topological chaos for birth-and-death-type models with proliferation [J].
Banasiak, J ;
Lachowicz, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (06) :755-775
[8]   Chaos for a class of linear kinetic models [J].
Banasiak, J ;
Lachowicz, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (06) :439-444
[9]   DYNAMICS OF BIRTH-AND-DEATH PROCESSES WITH PROLIFERATION - STABILITY AND CHAOS [J].
Banasiak, Jacek ;
Moszynski, Marcin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) :67-79
[10]  
Barrachina X., 2015, PREPRINT