Growth, electronic and magnetic properties of doped ZnO epitaxial and nanocrystalline films

被引:12
作者
Chambers, S. A.
Schwartz, D. A.
Liu, W. K.
Kittilstved, K. R.
Gamelin, D. R.
机构
[1] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2007年 / 88卷 / 01期
关键词
D O I
10.1007/s00339-007-3948-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co: ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co: ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn: ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co: ZnO and O-capped Mn: ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co( I) <-> Co( II)+ e(CB)(-) and Mn(III) <-> Mn(II)+ h(VB)(+) are energetically favorable, consistent with strong hybridization of Co ( Mn) with the conduction ( valence) band of ZnO. In contrast, the resonances Mn(I) <-> Mn( II)+ e(CB)(-) and Co(III) <-> Co( II)+ h(VB)(+) are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co: ZnO ( Mn: ZnO) is mediated by electrons ( holes).
引用
收藏
页码:1 / 5
页数:5
相关论文
共 25 条
  • [11] On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system
    Kundaliya, DC
    Ogale, SB
    Lofland, SE
    Dhar, S
    Metting, CJ
    Shinde, SR
    Ma, Z
    Varughese, B
    Ramanujachary, KV
    Salamanca-Riba, L
    Venkatesan, T
    [J]. NATURE MATERIALS, 2004, 3 (10) : 709 - 714
  • [12] Lever A.B. P., 1984, Inorganic Electronic Spectroscopy, V2nd
  • [13] Liu WK, 2005, J PHYS CHEM B, V109, P14486, DOI 10.1021/jp0518781
  • [14] Residual native shallow donor in ZnO
    Look, DC
    Hemsky, JW
    Sizelove, JR
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (12) : 2552 - 2555
  • [15] P-type doping and devices based on ZnO
    Look, DC
    Claftin, B
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (03): : 624 - 630
  • [16] LOW-TEMPERATURE CONDUCTIVITY OF ZNO FILMS PREPARED BY CHEMICAL VAPOR-DEPOSITION
    NATSUME, Y
    SAKATA, H
    HIRAYAMA, T
    YANAGIDA, H
    [J]. JOURNAL OF APPLIED PHYSICS, 1992, 72 (09) : 4203 - 4207
  • [17] Synthesis of colloidal Mn2+: ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films
    Norberg, NS
    Kittilstved, KR
    Amonette, JE
    Kukkadapu, RK
    Schwartz, DA
    Gamelin, DR
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (30) : 9387 - 9398
  • [18] First principles materials design for semiconductor spintronics
    Sato, K
    Katayama-Yoshida, H
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2002, 17 (04) : 367 - 376
  • [19] Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor
    Schwartz, DA
    Gamelin, DR
    [J]. ADVANCED MATERIALS, 2004, 16 (23-24) : 2115 - +
  • [20] Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO
    Sharma, P
    Gupta, A
    Rao, KV
    Owens, FJ
    Sharma, R
    Ahuja, R
    Guillen, JMO
    Johansson, B
    Gehring, GA
    [J]. NATURE MATERIALS, 2003, 2 (10) : 673 - 677