S-asymptotically ω-periodic and asymptotically ω-periodic solutions to semi-linear Cauchy problems with non-dense domain

被引:52
作者
de Andrade, Bruno [1 ]
Cuevas, Claudio [1 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50540740 Recife, PE, Brazil
关键词
Abstract Cauchy problem; Asymptotically omega-periodic function; S-asymptotically omega-periodic function; Hille-Yosida operator; Non-dense domain; Nonlocal conditions; Fractional integro-differential equations; Neutral differential equations; FUNCTIONAL-DIFFERENTIAL EQUATIONS; BANACH-SPACES; EXISTENCE; REGULARITY; UNIQUENESS; SYSTEM;
D O I
10.1016/j.na.2009.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the existence and uniqueness of S-asymptotically omega-periodic and asymptotically omega-periodic solutions to a first-order differential equation with linear part dominated by a Hille-Yosida operator with non-dense domain. Applications to partial differential equations, fractional integro-differential and neutral differential equations are given. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3190 / 3208
页数:19
相关论文
共 75 条
[1]   Bohr-Neugebauer type theorem for some partial neutral functional differential equations [J].
Adimy, Mostafa ;
Elazzouzi, Abdelhai ;
Ezzinbi, Khalil .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (05) :1145-1160
[2]  
Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P397
[3]   Existence results for a class of abstract nonlocal Cauchy problems [J].
Aizicovici, S ;
McKibben, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (05) :649-668
[4]  
Amir B., 1999, Ann. Math. Blaise Pascal, V6, P1, DOI DOI 10.5802/AMBP.110
[5]  
Anh V. V., 2003, International Journal of Stochastic Analysis, V16, DOI [DOI 10.1155/S1048953303000078, 10.1155/S1048953303000078]
[6]  
[Anonymous], SOBOLEV SPACES SEMIG
[7]  
[Anonymous], 1987, NONLINEAR OPERATORS
[8]  
Appell J., 2005, FIXED POINT THEOR-RO, V6, P157
[9]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[10]  
CAICEDO A, 2010, FUNCT DIFFE IN PRESS