Combining Multiple Representations in a Genetic Algorithm for the Multiple Knapsack Problem

被引:5
作者
Fukunaga, Alex S. [1 ]
Tazoe, Satoshi [2 ]
机构
[1] Tokyo Inst Technol, Global Edge Inst, Meguro Ku, Tokyo 152, Japan
[2] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo, Japan
来源
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5 | 2009年
关键词
BIN-PACKING;
D O I
10.1109/CEC.2009.4983244
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new evolutionary algorithm for the multiple knapsack problem (MKP) which uses multiple representations. Previous, successful approaches for the MKP have included a weight-coded, order-based representation, as well as a grouping representation enhanced by a dominance condition to restrict search. We propose a representation-switching genetic algorithm which periodically transforms the representation of individuals between these two representations. We show that this new hybrid algorithm outperforms the previous approaches.
引用
收藏
页码:2423 / +
页数:2
相关论文
共 19 条
[1]  
[Anonymous], 1999, APPROXIMATION ALGORI
[2]   LOADING PROBLEM [J].
EILON, S ;
CHRISTOF.N .
MANAGEMENT SCIENCE SERIES A-THEORY, 1971, 17 (05) :259-268
[3]  
Falkenauer E., 1996, Journal of Heuristics, V2, P5, DOI 10.1007/BF00226291
[4]   A New Representation and Operators for Genetic Algorithms Applied to Grouping Problems [J].
Falkenauer, Emanuel .
EVOLUTIONARY COMPUTATION, 1994, 2 (02) :123-144
[5]   Bin completion algorithms for multicontainer packing, knapsack, and covering problems [J].
Fukunaga, Alex S. ;
Korf, Richard E. .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2007, 28 :393-429
[6]   A New Grouping Genetic Algorithm for the Multiple Knapsack Problem [J].
Fukunaga, Alex S. .
2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, :2225-2232
[7]   POWER OF DOMINANCE RELATIONS IN BRANCH-AND-BOUND ALGORITHMS [J].
IBARAKI, T .
JOURNAL OF THE ACM, 1977, 24 (02) :264-279
[8]   Computational Aspects of Clearing Continuous Call Double Auctions with Assignment Constraints and Indivisible Demand [J].
Kalagnanam, Jayant R. ;
Davenport, Andrew J. ;
Lee, Ho S. .
Electronic Commerce Research, 2001, 1 (03) :221-238
[9]  
Kellerer H., 2004, KNAPSACK PROBLEMS, DOI DOI 10.1007/978-3-540-24777-710
[10]   Upper bounds and algorithms for the maximum cardinality bin packing problem [J].
Labbé, M ;
Laporte, G ;
Martello, S .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 149 (03) :490-498