Molecular cooking: Amino acids trap silicon in carbon matrix to boost lithium-ion storage

被引:41
|
作者
Meng, Tao [1 ]
Li, Bo [3 ]
Liu, Cong [1 ]
Wang, Qiushi [1 ]
Shu, Dong [4 ]
Ou, Shanqiang [1 ]
Balogun, M. -Sadeeq [2 ]
Su, Hongjie [1 ]
Tong, Yexiang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, Key Lab Low Carbon Chem & Energy Conservat Guang, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Hunan Joint Int Lab Adv Mat & Technol Clean Energ, Changsha 410082, Peoples R China
[3] South China Normal Univ, Minist Educ, Key Lab Theoret Chem Environm, Sch Chem, Guangzhou 510006, Peoples R China
[4] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Silicon@carbon; Amino acid; Molecular cooking; Lithium affinity; Li-ion storage; POLYACRYLIC-ACID; ANODE; PERFORMANCE; NANOPARTICLES; BINDER;
D O I
10.1016/j.ensm.2022.01.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploring facile and low-cost preparation route is desired for high-performance silicon@carbon (Si@C) anode. Here, the amino acid units of protein molecules in egg white trap modified Si nanoparticles (NPs) through a facile 'molecular cooking' strategy, followed by incorporating the Si NPs into a functional carbon skeleton at nanoscale through in situ carbonization. The relationship between fundamental structure and properties is well studied. Experimental results reveal that the outer N-doped carbon layer can not only provide sufficient electrical conductivity for Li-ion reaction kinetics but can also enhances the stability of the interface between the active material and the Cu collector. The inner SiO(x )layer shows good lithium affinity, which can optimise the Li-ion transport path. The double layer can effectively buffer the huge internal strain of the Si core. The resultant hybrid M-Si@SiOx @C composite with 32.4 wt% carbon content possessed superior rate capability (1062 mAh g(-1) at 6 A g(-1) ) and long-term stability (727 mAh g(-1) at 2 A g(-1) after 400 cycles). In addition, the fabricated full cell also demonstrated favourable Li-ion storage capability. This work provides a facile strategy for the preparation of other electrodes with serious continuous volumetric swelling-shrinking behaviour upon cycling.
引用
收藏
页码:344 / 351
页数:8
相关论文
共 50 条
  • [21] Porous carbon sphere anodes for enhanced lithium-ion storage
    Etacheri, Vinodkumar
    Wang, Chengwei
    O'Connell, Michael J.
    Chan, Candace K.
    Pol, Vilas G.
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (18) : 9861 - 9868
  • [22] Controllable synthesis of silicon/carbon microspheres alternating carbon and silicon shells for high-energy lithium-ion batteries
    Luo, Jinhua
    Xu, Difa
    Chen, Liang
    An, Changsheng
    Wang, Yanhong
    Zhu, Hai
    Feng, Wenhui
    Li, Yanhua
    Zhang, Shiying
    Chen, Han
    ELECTROCHIMICA ACTA, 2022, 432
  • [23] Progress in Lithium Storage Mechanism and Optimizing Lithium Storage Performance of Hard Carbon Anodes for Lithium-ion Batteries
    Shu, Qiqi
    Lian, Fei
    Liang, Chenli
    Zhang, Qingtang
    Cailiao Daobao/Materials Reports, 2024, 38 (13):
  • [24] Cesium Ion-Mediated Microporous Carbon for CO2 Capture and Lithium-Ion Storage
    Lee, Hyeon Jeong
    Ko, Dongah
    Kim, Joo-Seong
    Park, Youngbin
    Hwang, Insu
    Yavuz, Cafer T.
    Choi, Jang Wook
    CHEMNANOMAT, 2021, 7 (02): : 150 - 157
  • [25] Flexible MnS-Carbon Fiber Hybrids for Lithium-Ion and Sodium-Ion Energy Storage
    Gao, Shuang
    Chen, Gang
    Dall'Agnese, Yohan
    Wei, Yingjin
    Gao, Zhongmin
    Gao, Yu
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (51) : 13535 - 13539
  • [26] Effect of varying carbon microstructures on the ion storage behavior of dual carbon lithium-ion capacitor
    Bhattacharjee, Udita
    Gautam, Abhay
    Martha, Surendra K.
    ELECTROCHIMICA ACTA, 2023, 454
  • [27] Integration of Carbon-Based Nanomaterials for Hybrid Energy Storage in Lithium-Ion Batteries
    Jiavana, K. Ferents Koni
    Suganthi, K.
    Kayalvizhi, S.
    Malarvizhi, S.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2024, 19 (05) : 472 - 486
  • [28] Silicon/Biogas-Derived Carbon Nanofibers Composites for Anodes of Lithium-Ion Batteries
    Camean, Ignacio
    Cuesta, Nuria
    Ramos, Alberto
    Garcia, Ana B.
    C-JOURNAL OF CARBON RESEARCH, 2020, 6 (02):
  • [29] Silicon-carbon composites for lithium-ion batteries: A comparative study of different carbon deposition approaches
    Barragan, Alejandro Alvarez
    Nava, Giorgio
    Wagner, Nicole J.
    Mangolini, Lorenzo
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (01):
  • [30] Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications
    Shim, Hwirim
    Lim, Eunho
    Fleischmann, Simon
    Quade, Antje
    Tolosa, Aura
    Presser, Volker
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (07) : 1776 - 1789