A class of degenerate elliptic eigenvalue problems

被引:6
作者
Lucia, Marcello [1 ]
Schuricht, Friedemann [2 ]
机构
[1] CUNY Coll Staten Isl, Dept Math, CSI, Staten Isl, NY 10314 USA
[2] Tech Univ Dresden, Fachbereich Math, D-01062 Dresden, Germany
关键词
Nonlinear eigenvalue problems; quasilinear elliptic equations; critical point theory; convex analysis; nonsmooth analysis; CRITICAL-POINT THEORY; P-LAPLACE OPERATOR; 1-LAPLACE OPERATOR; INDEFINITE WEIGHT;
D O I
10.1515/anona-2012-0202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting.
引用
收藏
页码:91 / 125
页数:35
相关论文
共 24 条
  • [1] Adams A., 2003, Sobolev Spaces, V140
  • [2] Ancona A., 1979, Commun. Partial Differ. Equ., V4, P321, DOI DOI 10.1080/03605307908820097
  • [3] [Anonymous], 1973, Rocky Mountain J. Math., DOI 10.1216/RMJ-1973-3-2-161
  • [4] [Anonymous], NONLINEAR POTENTIAL
  • [5] [Anonymous], 1986, CONVEXITY OPTIMIZATI
  • [6] Eigenvalue problems with weights in Lorentz spaces
    Anoop, T. V.
    Lucia, Marcello
    Ramaswamy, Mythily
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (03) : 355 - 376
  • [7] Barbu V., 1994, MATH METHODS ORG DIF
  • [8] Beauzamy B., 1985, Introduction to Banach Spaces and Their Geometry
  • [9] A direct uniqueness proof for equations involving the p-Laplace operator
    Belloni, M
    Kawohl, B
    [J]. MANUSCRIPTA MATHEMATICA, 2002, 109 (02) : 229 - 231
  • [10] Brezis H., 2003, DIFFERENTIAL INTEGRA, V16, P1