Motivation Single-cell multi-omics assays simultaneously measure different molecular features from the same cell. A key question is how to benefit from the complementary data available and perform cross-modal clustering of cells.Results We propose Single-Cell Multi-omics Clustering (scMoC), an approach to identify cell clusters from data with comeasurements of scRNA-seq and scATAC-seq from the same cell. We overcome the high sparsity of the scATAC-seq data by using an imputation strategy that exploits the less-sparse scRNA-seq data available from the same cell. Subsequently, scMoC identifies clusters of cells by merging clusterings derived from both data domains individually. We tested scMoC on datasets generated using different protocols with variable data sparsity levels. We show that scMoC (i) is able to generate informative scATAC-seq data due to its RNA-guided imputation strategy and (ii) results in integrated clusters based on both RNA and ATAC information that are biologically meaningful either from the RNA or from the ATAC perspective.Availability and implementation The data used in this manuscript is publicly available, and we refer to the original manuscript for their description and availability. For convience sci-CAR data is available at NCBI GEO under the accession number of GSE117089. SNARE-seq data is available at NCBI GEO under the accession number of GSE126074. The 10X multiome data is available at the following link https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-no-cell-sorting-3-k-1-standard-2-0-0.Supplementary information are available at Bioinformatics Advances online.
机构:
Chongqing Univ, Sch Big Data & Software Engn, Chongqing, Peoples R China
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
Jinfeng Lab, Chongqing, Peoples R China
Guangzhou Univ Chinese Med, ME State Key Lab Dampness Syndrome Chinese Med, Affiliated Hosp 2, Guangzhou, Peoples R ChinaChongqing Univ, Sch Big Data & Software Engn, Chongqing, Peoples R China
Zeng, Yuansong
Chen, Jianing
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R ChinaChongqing Univ, Sch Big Data & Software Engn, Chongqing, Peoples R China
Chen, Jianing
Pan, Zixiang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R ChinaChongqing Univ, Sch Big Data & Software Engn, Chongqing, Peoples R China
Pan, Zixiang
Yu, Weijiang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R ChinaChongqing Univ, Sch Big Data & Software Engn, Chongqing, Peoples R China
Yu, Weijiang
Yang, Yuedong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R ChinaChongqing Univ, Sch Big Data & Software Engn, Chongqing, Peoples R China
机构:
Univ Turku, Turku Biosci Ctr, Turku 20520, Finland
Abo Akad Univ, Turku 20520, FinlandUniv Turku, Turku Biosci Ctr, Turku 20520, Finland
Adossa, Nigatu
Khan, Sofia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turku, Turku Biosci Ctr, Turku 20520, Finland
Abo Akad Univ, Turku 20520, FinlandUniv Turku, Turku Biosci Ctr, Turku 20520, Finland
Khan, Sofia
Rytkonen, Kalle T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turku, Turku Biosci Ctr, Turku 20520, Finland
Abo Akad Univ, Turku 20520, Finland
Univ Turku, Inst Biomed, Turku 20520, FinlandUniv Turku, Turku Biosci Ctr, Turku 20520, Finland
Rytkonen, Kalle T.
Elo, Laura L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turku, Turku Biosci Ctr, Turku 20520, Finland
Abo Akad Univ, Turku 20520, Finland
Univ Turku, Inst Biomed, Turku 20520, FinlandUniv Turku, Turku Biosci Ctr, Turku 20520, Finland