Combating Fake Cyber Threat Intelligence using Provenance in Cybersecurity Knowledge Graphs

被引:7
作者
Mitra, Shaswata [1 ]
Piplai, Aritran [2 ]
Mittal, Sudip [1 ]
Joshi, Anupam [2 ]
机构
[1] Mississippi State Univ, Dept Comp Sci & Engn, Mississippi State, MS 39762 USA
[2] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21228 USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2021年
基金
美国国家科学基金会;
关键词
Cybersecurity; Fake Data; Provenance; Cyber Threat Intelligence;
D O I
10.1109/BigData52589.2021.9671867
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Today there is a significant amount of fake cybersecurity related intelligence on the internet. To filter out such information, we build a system to capture the provenance information and represent it along with the captured Cyber Threat Intelligence (CTI). In the cybersecurity domain, such CTI is stored in Cybersecurity Knowledge Graphs (CKG). We enhance the exiting CKG model to incorporate intelligence provenance and fuse provenance graphs with CKG. This process includes modifying traditional approaches to entity and relation extraction. CTI data is considered vital in securing our cyberspace. Knowledge graphs containing CTI information along with its provenance can provide expertise to dependent Artificial Intelligence (AI) systems and human analysts.
引用
收藏
页码:3316 / 3323
页数:8
相关论文
共 37 条
  • [1] [Anonymous], 2010, Intelligence Collection Disciplines (INTs)
  • [2] [Anonymous], 2021, THREAT INTELLIGENCE
  • [3] [Anonymous], 2021, WHAT ARE MOST CRITIC, P2021
  • [4] Asif Ekbal S. B., 2010, International Journal of Electrical, Computer, and Systems Engineering, V4, P155
  • [5] Bordes A., 2013, ADV NEURAL INFORM PR, V26
  • [6] Dasgupta Anantaa Kotal Soham, 2020, IEEE INT C BIG DAT 2
  • [7] Dasgupta Anantaa Kotal Soham, 2020, IEEE INT C BIG DAT
  • [8] Ding L., 2005, P AAAI SPRING S TECH
  • [9] Ding Paulo Pinheiro da Silva Li, 2005, TECHNICAL REPORT
  • [10] FireEye, FIREEYE REPORTS