Inorganic-organic competitive coating strategy derived uniform hollow gradient-structured ferroferric oxide-carbon nanospheres for ultra-fast and long-term lithium-ion battery

被引:92
作者
Xia, Yuan [1 ,2 ]
Zhao, Tiancong [1 ,2 ]
Zhu, Xiaohang [1 ,2 ]
Zhao, Yujuan [1 ,2 ]
He, Haili [1 ,2 ]
Hung, Chin-te [1 ,2 ]
Zhang, Xingmiao [1 ,2 ]
Chen, Yan [1 ,2 ]
Tang, Xinlei [1 ,2 ]
Wang, Jinxiu [1 ,2 ]
Li, Wei [1 ,2 ]
Zhao, Dongyuan [1 ,2 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai, Peoples R China
[2] Fudan Univ, Lab Adv Mat, Shanghai, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ANODE; ELECTRODES; PARTICLES; STORAGE; SPHERES;
D O I
10.1038/s41467-021-23150-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The gradient-structure is ideal nanostructure for conversion-type anodes with drastic volume change. Here, we demonstrate an inorganic-organic competitive coating strategy for constructing gradient-structured ferroferric oxide-carbon nanospheres, in which the deposition of ferroferric oxide nanoparticles and polymerization of carbonaceous species are competitive and well controlled by the reaction thermodynamics. The synthesized gradient-structure with a uniform size of similar to 420nm consists of the ferroferric oxide nanoparticles (4-8nm) in carbon matrix, which are aggregated into the inner layer (similar to 15nm) with high-to-low component distribution from inside to out, and an amorphous carbon layer (similar to 20nm). As an anode material, the volume change of the gradient-structured ferroferric oxide-carbon nanospheres can be limited to similar to 22% with similar to 7% radial expansion, thus resulting in stable reversible specific capacities of similar to 750 mAh g(-1) after ultra-long cycling of 10,000 cycles under ultra-fast rate of 10Ag(-1). This unique inorganic-organic competitive coating strategy bring inspiration for nanostructure design of functional materials in energy storage.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) :3348-3367
[2]   Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Ko, Minseong ;
Kim, Kyungho ;
Ahn, Kihong ;
Cho, Jaephil .
JOULE, 2017, 1 (01) :47-60
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries [J].
Chang, Won Jun ;
Kim, Su Han ;
Hwang, Jiseon ;
Chang, Jinho ;
Yang, Dong Won ;
Kwon, Sun Sang ;
Kim, Jin Tae ;
Lee, Won Woo ;
Lee, Jae Hyung ;
Park, Hyunjung ;
Song, Taeseup ;
Lee, In-Hwan ;
Whang, Dongmok ;
Park, Won Il .
NATURE COMMUNICATIONS, 2018, 9
[5]   Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries [J].
Chen, Yu Ming ;
Yu, Xin Yao ;
Li, Zhen ;
Paik, Ungyu ;
Lou, Xiong Wen .
SCIENCE ADVANCES, 2016, 2 (07)
[6]   In situ real-time gravimetric and viscoelastic probing of surface films formation on lithium batteries electrodes [J].
Dargel, Vadim ;
Shpigel, Netanel ;
Sigalov, Sergey ;
Nayak, Prasant ;
Levis, Mikhael D. ;
Daikhin, Leonid ;
Aurbach, Doron .
NATURE COMMUNICATIONS, 2017, 8
[7]   Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life [J].
Dong, Xiaoli ;
Chen, Long ;
Liu, Jingyuan ;
Haller, Servane ;
Wang, Yonggang ;
Xia, Yongyao .
SCIENCE ADVANCES, 2016, 2 (01)
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Niobium tungsten oxides for high-rate lithium-ion energy storage [J].
Griffith, Kent J. ;
Wiaderek, Kamila M. ;
Cibin, Giannantonio ;
Marbella, Lauren E. ;
Grey, Clare P. .
NATURE, 2018, 559 (7715) :556-+
[10]   RETRACTED: A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties (Retracted Article) [J].
Guan, Bu Yuan ;
Yu, Le ;
Li, Ju ;
Lou, Xiong Wen .
SCIENCE ADVANCES, 2016, 2 (03)